◎正当な理由による書き込みの削除について:      生島英之とみられる方へ:

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚


動画、画像抽出 || この掲示板へ 類似スレ 掲示板一覧 人気スレ 動画人気順

このスレへの固定リンク: http://5chb.net/r/math/1712376048/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

1132人目の素数さん
2024/04/06(土) 13:00:48.28ID:QDHCaaiE
【質問者必読!!】
まず>>1-4をよく読んでね

数学@5ch掲示板用 掲示板での数学記号の書き方例と一般的な記号の使用例
http://mathmathmath.dotera.net/

・まずは教科書、参考書、web検索などで調べるようにしましょう。(特に基本的な公式など)
・問題の写し間違いには気をつけましょう。
・長い分母分子を含む分数はきちんと括弧でくくりましょう。
  (× x+1/x+2 ;  ○((x+1)/(x+2)) )
・丸文字、顔文字、その他は環境やブラウザによりうまく表示できない場合があります。
 どうしても画像を貼る場合はPCから直接見られるところに見やすい画像を貼ってください。
 ピクトはPCから見られないことがあるので避けてください。
・質問者は名前を騙られたくない場合、トリップを付けましょう。
 (トリップの付け方は 名前(N)に 俺!#oretrip ←適当なトリ)
・質問者は回答者がわかるように問題を書くようにしましょう。
 でないと放置されることがあります。
 (変に省略するより全文書いた方がいい、また説明なく習慣的でない記号を使わないように)
・質問者は何が分からないのか、どこまで考えたのかを明記しましょう。
 それがない場合、放置されることがあります。
 (特に、自分でやってみたのに合わないので教えてほしい、みたいなときは必ず書くように)
・回答者も節度ある回答を心がけてください。
・970くらいになったら次スレを立ててください。

※前スレ
高校数学の質問スレ Part431
http://2chb.net/r/math/1691291450/
高校数学の質問スレ Part430
http://2chb.net/r/math/1689726231/
高校数学の質問スレ Part432
http://2chb.net/r/math/1695900004/
高校数学の質問スレ Part433
http://2chb.net/r/math/1709503076/
2132人目の素数さん
2024/04/06(土) 13:00:58.64ID:QDHCaaiE
は0,1,-1のいずれでもない複素数の定数とする。
複素数平面上の2点A(α)、B(1/α)を通る直線に原点から下ろした垂線の足をH(ω)とする。
ωをαの式で表せ。
3132人目の素数さん
2024/04/06(土) 17:46:38.97ID:VCigLgIf
この問題に証明を与えてください


【問題】

複素数を係数とするxの2次式f(x)全体からなる集合をSとする。
Sの要素で、以下を満たすものは存在するか。

「任意の複素数αに対して『f(α)が実数ならばf(α)≧0』が成り立つ。」
4132人目の素数さん
2024/04/06(土) 17:53:01.54ID:SXQZC+wA
この問題はまだ誰一人解けていません。

αは0でも1でもない複素数の定数とする。
複素数平面上の2点A(α)、B(1/α)を通る直線に原点から下ろした垂線の足をH(ω)とする。
ωをαの式で表せ。
5132人目の素数さん
2024/04/06(土) 18:42:51.34ID:clDXMli0
>>3
存在しない
存在するとすれば(以下略)
6132人目の素数さん
2024/04/06(土) 22:55:57.49ID:moWfVT2V
春休みの宿題ですがよろしくおねがいします。

x^2-100x-1=0 の正の解を aとする。
u_0=1 とし、a*(u_(k-1)) の整数部分 を u_k (k=1,2,3,…) とする。
u_100 の下2桁を求めよ。
7132人目の素数さん
2024/04/07(日) 00:46:52.65ID:uHt3zaFH
>>4
[前スレ.955] ぢゃダメ?

A2H = \(a,b) (-2*a*b*1i)/((a^2+b^2)*((a-b*1i)-1/(a-b*1i)))
8132人目の素数さん
2024/04/07(日) 01:52:26.64ID:0Cj84V9N
α=50+√2501, β=50-√2501, tn= α^n+β^nとおく
t0=2,t1=100, tn=100t(n-1)+t(n-2)
tn ≡ 2 ( mod 100 ) ( n:even )
≡ 0 ( mod 100 ) ( n:odd )
∴ k : odd
→ [ α^k ] = [tk-β^k] = tk ≡ 0 ( mod 100 )

k : even
→ [ α^k ] = [tk-β^k] = tk-1 ≡ 1 ( mod 100 )
9132人目の素数さん
2024/04/07(日) 03:40:03.35ID:FDxtWtA1
>>3
任意の2次式をf(x)とする
f(x)+1は代数学の基本定理よりある複素数aでf(a)+1=0、つまりf(a)=-1となる
つまり任意の2次式f(x)に対してf(a)=-1となる複素数aが存在する

「任意の複素数αに対して『f(α)が実数ならばf(α)≧0』が成り立つ。」
Sの要素は存在しない
10132人目の素数さん
2024/04/07(日) 05:15:41.34ID:7oKy+2At
>>9
高校数学で代数学の基本定理は使えません
高校数学範囲内で示しなさい
11132人目の素数さん
2024/04/07(日) 06:18:24.45ID:FDxtWtA1
>>10
高校範囲なのね
それなら、f(x)+1も2次式だから、f(x)+1=0となる解があることは二次方程式の解の公式で言えるから、代数学の基本定理のところをこれで置き換えればいい感じかね
12132人目の素数さん
2024/04/07(日) 06:24:44.42ID:KntW5z60
>>6
方針:
step 1 怒涛の計算をする
step 2 法則を見出す
step 3 理屈を考える

step 1

100
10000
1000099
100019899
100011989099
10002198929798
1000319904968898
100041992695819597
10005199589486928597
1000620000941388679296
100072005293728354858196
10008201149373776874498895
1000920186942671415804747695
100102026895416515357349268394
10011203609728594207150731587094
1001220462999754837230430507977793
100132057503585212317250201529366393
10014206970821520986562250583444617092
1001520829139655683868542308545991075592
13132人目の素数さん
2024/04/07(日) 06:25:52.31ID:FDxtWtA1
きんに君「パワー」
14132人目の素数さん
2024/04/07(日) 06:52:03.25ID:KntW5z60
>>6 入力ミス修正
方針:
step 1 怒涛の計算をする
step 2 法則を見出す
step 3 理屈を考える

step 1
100
10000
1000099
100019899
10002989998
1000399019698
100049904959797
10005990894999397
1000699139404899496
100079919931384948996
10008992692277899799095
1000999349147721364858495
100109943907464414385648594
10011995390095589159929717894
1001299648953466380407357437993
100139976890736733629895673517193
10014998988722626829369974709157292
1001600038849153419670627366589246392
100170018883904064593892106633633796491
10018003488429255612808881290729968895491
1001900518861809465345482021179630523345590
100200069889669375790161010999253782303454490
15132人目の素数さん
2024/04/07(日) 07:18:48.58ID:KntW5z60
step 2
f=function(n) (100-(n-1)%/%2)%%100
f(100)
実行してみる
> f(100)
[1] 51

step 3
a^2 = 100a + 1 を使って 数学的帰納法が使えそう。
16132人目の素数さん
2024/04/07(日) 07:35:27.81ID:KntW5z60
>>2
暫定解
α = x + y*i
ω = ω1 + ω2*i
として
ω1 = (2*x*y^2*(x^2+y^2+1))/((x^2+y^2)*(x^4+2*x^2*(y^2-1)+(y^2+1)^2))
ω2 = -(2*x^2*y*(x^2+y^2-1))/((x^2+y^2)*(x^4+2*x^2*(y^2-1)+(y^2+1)^2))
17132人目の素数さん
2024/04/07(日) 07:36:16.76ID:KntW5z60
練習問題

x^2-100x-1=0 の正の解を aとする。
u_0=1 とし、a*(u_(k-1)) の整数部分 を u_k (k=1,2,3,…) とする。
u_2024 の下2桁を求めよ。
18132人目の素数さん
2024/04/07(日) 07:59:09.69ID:Sbq5+Z7q
桁数でおかしいと分からんのかねぇ
19132人目の素数さん
2024/04/07(日) 08:19:29.36ID:tqu4IKnE
>>11
2次方程式の解の公式は実数系数でしか使えない
虚数の平方根は高校では定義していない
20132人目の素数さん
2024/04/07(日) 09:14:23.57ID:KntW5z60
不定長整数の扱える言語でのu_100の値の算出希望
21132人目の素数さん
2024/04/07(日) 09:25:06.49ID:KntW5z60
>7と16は同値であることを確認。
https://www.wolframalpha.com/input?i=%282*a*b%5E2*%28a%5E2%2Bb%5E2%2B1%29%29%2F%28%28a%5E2%2Bb%5E2%29*%28a%5E4%2B2*a%5E2*%28b%5E2-1%29%2B%28b%5E2%2B1%29%5E2%29%29+-+1i*+%282*a%5E2*b*%28a%5E2%2Bb%5E2-1%29%29%2F%28%28a%5E2%2Bb%5E2%29*%28a%5E4%2B2*a%5E2*%28b%5E2-1%29%2B%28b%5E2%2B1%29%5E2%29%29+%EF%BC%9D%E3%80%80%28-2*a*b*1i%29%2F%28%28a%5E2%2Bb%5E2%29*%28%28a-b*1i%29-1%2F%28a-b*1i%29%29%29+&lang=ja
22132人目の素数さん
2024/04/07(日) 09:36:32.03ID:KntW5z60
高校数学範囲で問題の意味がわかればそれでいいんじゃないか?
受験板じゃないので小学校の問題を方程式や三角関数を使ってといてもいいと思う。
23132人目の素数さん
2024/04/07(日) 09:47:58.07ID:Sbq5+Z7q
u_100 はおろか u_3 すら無理と分からんのかな
24132人目の素数さん
2024/04/07(日) 10:51:16.98ID:Qmy1w59O
>>10
z^2=α (αは複素数)が解を持つのは容易に示せるというか高校の教科書の例題とかでやってる
後は2次方程式を平方完成したら終わり
25132人目の素数さん
2024/04/07(日) 11:52:09.34ID:FDxtWtA1
あとはまかせた
26132人目の素数さん
2024/04/07(日) 12:10:50.95ID:ryf3vuDH
東大を目指す高校生は罵倒しかレスしないクズ人間になっちゃだめだぞ。
27132人目の素数さん
2024/04/07(日) 12:14:55.25ID:FDxtWtA1
そもそも東大めざす人は5chやっちゃあかんやろ…
28132人目の素数さん
2024/04/07(日) 16:33:34.29ID:dxR8IDVd
>>27
それは言える。
助言よりも罵倒を喜びとする人間が跋扈しているのは確か。
29132人目の素数さん
2024/04/07(日) 17:54:28.62ID:iGPdQuvl
地球のAIって、知ったかする。で、
a^n の定義 ただしa<0、n∈有理数
を尋ねてみるため、
「マイナスの累乗」で聞いてみたら
a^n 、a≧0、n∈有理数と解釈したようで
a^(-n)=a^(1/n) だなんて解説しやがった
地球のAIって🐴🦌だと思います。で

a^n の定義 ただしa<0、n∈有理数
を教えて下さい。 by 👤
30132人目の素数さん
2024/04/07(日) 18:17:24.66ID:u8yJv6qU
定義できない
31132人目の素数さん
2024/04/07(日) 18:26:59.55ID:vbuuimM0
未解決の難問です。

αは0でも1でもない複素数の定数とする。
複素数平面上の2点A(α)、B(1/α)を通る直線に原点から下ろした垂線の足をH(ω)とする。
ωをαの式で表せ。
32132人目の素数さん
2024/04/07(日) 22:04:33.83ID:uHt3zaFH
>>21
>>7
ω = -(2xy・1i)/((xx+yy)*((x-y・1i)-1/(x-y・1i)))
  = -(α+α*)(α-α*)/{2(αα*)(α*-1/α*)}
かな?
33132人目の素数さん
2024/04/08(月) 00:40:23.65ID:DE/zj2aw
平面上に2つの正方形があり内部の共有点をもたないとする。
このとき、平面上のある直線によって、2つの正方形の内部を分離することができる。

明らかなことのように思えるのですが
実際に示すにはどのようにすればいいですか。
34132人目の素数さん
2024/04/08(月) 01:23:39.63ID:30jTzHCN
二つの正方形の中心を通る直線をピャーって引けばいいのかな
35132人目の素数さん
2024/04/08(月) 01:28:21.60ID:R+MbGFnE
2つの正方形を A, B とする。
A, Bの共通点が
・A、Bの辺の中間点(≠頂点)であるとき
 → 辺の一部を共有 → その辺を延長した直線
・Aの頂点、 Bの辺の中間点であるとき(あるいは逆のとき)
 → Bの辺を延長した直線
・A, Bの頂点であるとき
 → Aの辺とBの辺がなす角の2等分線
36132人目の素数さん
2024/04/08(月) 01:33:15.76ID:R+MbGFnE
・A, Bが共通点をもたないとき
 → それらの中心を固定しつつ相似拡大すれば、いずれぶつかる。
 → これらは共通点をもつから、上記を適用する。
37132人目の素数さん
2024/04/08(月) 05:17:18.54ID:BNQryfjZ
>>29
e^iθ=cosθ+isinθなど既存の公式が成立するように定義できるよ。
i^iとかもlog(i)とかsin(i)も定義できる。
i^iが実数になるのは有名。
検索すればいくらでもでてくる。
38132人目の素数さん
2024/04/08(月) 07:30:08.65ID:mbGKeakd
>>32
同値が確認できました。素晴らしい計算力ですね。脱帽。

https://www.wolframalpha.com/input?i=%28-2*a*b*1i%29%2F%28%28a%5E2%2Bb%5E2%29*%28%28a-b*1i%29-1%2F%28a-b*1i%29%29%29+%3D%E3%80%80-%28%28a%2B1i*b%29%2B%28a-1i*b%29%29*%28%28a%2B1i*b%29-%28a-1i*b%29%29%2F%282*%28%28a%2B1i*b%29*%28a-1i*b%29%29*%28%28a-1i*b%29-1%2F%28a-1i*b%29%29%29&lang=ja
39132人目の素数さん
2024/04/08(月) 07:46:38.94ID:qrYZegDW
そもそも高校数学で習う用語の意味すら理解できてない
40132人目の素数さん
2024/04/08(月) 08:16:32.57ID:H5F/SAC8
以下の命題が恒真命題であるか否かを答えよ。
正直者ならば(嘘つきならば正直である)
裏金議員ならば(清廉潔白ならば裏金議員である)
41132人目の素数さん
2024/04/08(月) 08:18:35.83ID:qrYZegDW
凸領域AとBが内点を共有しPをA,Bの外部から任意にとる
AとPの凸包A'とBとPの凸包B'は内点を共有しない
実際Aの内点とPの凸包からPを除いた集合A''は開集合でA'の稠密部分集合だからA'の内部である
同様にB''を構成すればA''とB''は共有点を持たない
以上により凸集合A"とB"をそれぞれA,Bを含み、内点を共有せず、3点P,Q,Rを共有するように採れる
平面PQR
42132人目の素数さん
2024/04/08(月) 08:19:02.85ID:H5F/SAC8
>>40
類題
以下の命題が恒真命題であるか否かを答えよ。
罵倒厨ならば(Phimoseならば罵倒厨である)
43132人目の素数さん
2024/04/08(月) 08:25:46.86ID:qrYZegDW
恒真という単語は高校数学ではありえない
基礎論では使われるが別の意味
44132人目の素数さん
2024/04/08(月) 08:44:44.80ID:H5F/SAC8
では、
以下の命題の真偽を判定せよ。
罵倒厨ならば(Phimoseならば罵倒厨である)
45132人目の素数さん
2024/04/08(月) 11:26:10.55ID:YgQmcPv6
>>44
汚い言葉遣いからして、出題者自身が罵倒厨とやらなんだね
自己紹介乙
46132人目の素数さん
2024/04/08(月) 16:54:13.23ID:TvkfjiTR
尿瓶ジジイまた自己紹介かw
47132人目の素数さん
2024/04/08(月) 19:24:02.50ID:mbGKeakd
次の命題の真偽を判定せよ

(罵倒厨でないならば 罵倒厨である)ならば Phimoseである。
48132人目の素数さん
2024/04/08(月) 22:42:06.91ID:DE/zj2aw
内接円の半径が4で外接円の半径が9である三角形はぎょうさんありますが
そのような三角形の面積の最大値は求められますか
49132人目の素数さん
2024/04/09(火) 01:24:19.33ID:y3XJRj1N
尿瓶ジジイぐうの音も出ないのかよ?
50132人目の素数さん
2024/04/09(火) 01:52:41.71ID:FI5rqsNy
log(r/(4R))
= log(sin(A/2))+log(sin(B/2))+log(sin(C/2))

が定数のときのsin(A)+sin(B)+sin(C)の極値を求めればよく

determinant {{1,1,1},{cot(A/2),cot(B/2),cot(C/2)},{cos(A),cos(B),cos(C)}}
=
-2 csc(A/2) csc(B/2) csc(C/2) sin(A/2 - B/2) sin(A/2 - C/2) sin(B/2 - C/2) sin(A/2 + B/2 + C/2)

が0の場合に限定できるから二等辺三角形として考えれば良い
51132人目の素数さん
2024/04/09(火) 03:26:28.63ID:C2bW8Eo+
辺の長さを a,b,c とすれば 面積は
 S = abc/(4R) = (1/2)r(a+b+c), R=9, r=4,
但し、三角不等式 0<a<b+c 等を伴なう。

この附帯条件をとり除くために「Ravi変換」を行なおう。
 p = (-a+b+c)/2, q = (a-b+c)/2, r = (a+b-c)/2,
 (p,q,r は、頂点 A,B,C から内接円の接点までの距離)
 a = q+r, b = r+p, c = p+q,
 S = (q+r)(r+p)(p+q)/(4R) = r(p+q+r),
52132人目の素数さん
2024/04/09(火) 04:26:09.69ID:Fv1gSIBK
>>45
>40でなく>44にレスするところがPhimoseくんの証だね。
Q.E.D.
53132人目の素数さん
2024/04/09(火) 05:18:30.68ID:LVhvjoy+
早起きして作図の練習

>>48
>内接円の半径が4で外接円の半径が9である三角形はぎょうさんあります

課題:内接円の半径が4で外接円の半径が9である三角形を9個描け。

例:
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
54132人目の素数さん
2024/04/09(火) 05:18:53.52ID:LM9lASN5
さすが罵倒を喜びとする人間
55132人目の素数さん
2024/04/09(火) 06:39:13.31ID:99Biy/EB
>>53
乱数発生させて面積最大の三角形を推定(ほぼ二等辺三角形)
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

> abs(A-B)
[1] 16.97112
> abs(B-C)
[1] 16.96999
> abs(C-A)
[1] 11.31376
> ABC2S(A,B,C)
[1] 90.50995

東大合格者による数値解の投稿を希望します。
56132人目の素数さん
2024/04/09(火) 07:13:09.65ID:99Biy/EB
二等辺三角形であることを前提に立式すると変数が減らせる。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
面積と辺の長さは
> ABC2S(A,B,C)
[1] 90.50967
> abs(A-B)
[1] 16.97056
> abs(B-C)
[1] 11.31371
> abs(C-A)
[1] 16.97056

乱数発生させての数値と近似している。
東大合格による厳格値の投稿を期待します。
57132人目の素数さん
2024/04/09(火) 08:28:34.21ID:dQ8yc1ua
QEDの意味も分かってなさそうだねチンパンは
58132人目の素数さん
2024/04/09(火) 10:30:06.35ID:99Biy/EB
>>56
これだと少し小さい
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
> ABC2S(A,B,C)
[1] 89.44272
59132人目の素数さん
2024/04/09(火) 10:58:55.85ID:MThpdbCe
>>52
特定の誰かを攻撃する意思なんてないしなwww
お前みたいな汚い言葉遣いするやつはみんな罵倒厨www
60132人目の素数さん
2024/04/09(火) 11:56:26.26ID:dQ8yc1ua
また気に食わないレスは同一人物に見える病気かよ
61132人目の素数さん
2024/04/09(火) 13:34:02.87ID:C2bW8Eo+
>>51
外心O と 内心I の距離は
 OI = √{R(R-2r)} = 3,
 (Chapple-Euler の式)
62132人目の素数さん
2024/04/09(火) 14:11:46.42ID:99Biy/EB
>6の答は51でいいの?
>48の数値解って>56でいいのか?

東大合格者向けの問題に解答できず
罵倒解のみ投稿するPhimoseが東大合格者だと思う人は
その旨とその根拠を投稿してください。
63132人目の素数さん
2024/04/09(火) 14:18:51.12ID:99Biy/EB
>>61
検証

>56で内心の座標は(3,0)
>58での内心の座標は(-3,0)
OI=3は成立している。
64132人目の素数さん
2024/04/09(火) 15:22:18.45ID:C2bW8Eo+
ABCが二等辺三角形のとき
 AB = 12√2 = 16.970562748 (=c)
 BC = 12√2 = 16.970562748 (=a)
 CA = 8√2 = 11.31370850  (=b)
 h = 16,
 p = 4√2,
 q = 8√2,
 S = 64√2 = 90.5096680
65132人目の素数さん
2024/04/09(火) 15:30:27.56ID:Y8z6QzJr
面積最小でも二等辺三角形
66132人目の素数さん
2024/04/09(火) 16:40:41.68ID:C2bW8Eo+
面積最小のとき(>>58)は
 AB = 6√5 = 13.416407865 (=c)
 BC = 8√5 = 17.88543820 (=a)
 CA = 6√5 = 13.416407865 (=b)
 h = 10,
 p = 2√5,
 q = 4√5,
 S = 40√5 = 89.4427191

面積最大のとき(>>56)は >>64
67132人目の素数さん
2024/04/09(火) 17:46:10.18ID:CipIjxR/
尿瓶ジジイまた懲りずにレス乞食w
68132人目の素数さん
2024/04/09(火) 18:08:52.93ID:Fv1gSIBK
>>66
厳密解ありがとうございました。
R言語の数値解とほぼ合致してすっきりしました。
69132人目の素数さん
2024/04/09(火) 18:58:12.24ID:99Biy/EB
演習問題 内接円の半径4で外接円の半径9である三角形の3辺の和の最大値を求めよ。
70132人目の素数さん
2024/04/09(火) 20:45:34.77ID:C2bW8Eo+
 r = 4,
 S ≦ 64√2, 
から
 a+b+c = 2S/r ≦ 32√2,
71132人目の素数さん
2024/04/09(火) 21:22:21.48ID:Y8z6QzJr
アホすぎて呆れる
72132人目の素数さん
2024/04/09(火) 21:29:17.52ID:99Biy/EB
>>61
OI = √{R(R-2r)} = 3を体感

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
原点が外心、+が内心
73132人目の素数さん
2024/04/09(火) 21:34:53.21ID:99Biy/EB
演習問題 
内接円の半径4で外接円の半径9である三角形の最大長の辺の長さの最大値を求めよ。
内接円の半径4で外接円の半径9である三角形の内角の最大値を求めよ。
74 警備員[Lv.1(前6)][新][苗][警]
2024/04/10(水) 11:20:21.28ID:r7KlIs1d
n=n-1を満たすnを「n-1数」と呼ぶ。
「n-1数」であるa,bに対してa+b=0となれることを証明しなさい(証明技能)
75132人目の素数さん
2024/04/10(水) 11:20:47.61ID:pMIf56PT
標準偏差の式は
平均との偏差の二乗の平均の平方根ですが
なぜその公式を採択したんでしょうか
平均との偏差の絶対値の平均のほうが直感的に意味合いが分かりやすいし
二乗して平方根をとる計算コストごないのでこちらのほうが採択されても良かった気がします
ばらつきの度合いを表すのに絶対値ではうまくなかった理由があるんでしょうか
76132人目の素数さん
2024/04/10(水) 11:38:23.26ID:gUJM5wxO
そりゃ標準正規分布に持ち込むときの分母だからやろ
77132人目の素数さん
2024/04/10(水) 13:55:37.85ID:r7KlIs1d
n=n-1を満たすnを「n-1数」と呼ぶ。
「n-1数」であるa,bに対して、a-bの値は一通りに定まるか。
78132人目の素数さん
2024/04/10(水) 13:59:12.51ID:IkSXJvM8
実験して楽しむ問題


偏差値は平均50、標準偏差10の正規分布を前提としている。

平均50、標準偏差sdの標準偏差の正規分布に従う変数を100万個作り、
(計測値-平均)の絶対値の平均を非標準偏差nsdとする。
sdを1から50まで変化させてsdとnsdの関係をグラフ化せよ。


Rが使えるなら下記のコードで体感できる。
他の分布でどうなるかやってみると面白そう。

sd2nsd=\(sd,m=50,k=1e6){
x=m+sd*scale(rnorm(k))
m=mean(x)
nsd=mean(abs(x-m))
nsd
}
sd=seq(1,50)
nsd=sapply(sd,sd2nsd)
cbind(sd,nsd)
plot(sd,nsd)
# 線形回帰
lm=lm(nsd~sd)
summary(lm)
abline(lm)
79132人目の素数さん
2024/04/10(水) 13:59:32.75ID:3J50m0Av
二乗した方が都合が良いから一番良く使われてるだけ。
ベクトルの絶対値で成分二乗する理由とかと同じ。
80イナ ◆/7jUdUKiSM
2024/04/10(水) 15:57:04.70ID:FwRU7N5f
>>48
三角形の底辺をt,高さをhとすると面積Sは、
S=th/2
ピタゴラスの定理より(h-9)^2+(t/2)^2=9^2
h^2-18h+t^2/4=0
t^2=72h-4h^2
直角三角形の相似より、
h-4:4=√{h^2+(t/2)^2}:t/2
t(h-4)/2=4√{h^2+t^2/4}
th-4t=8√{h^2+t^2/4}
th-4t=4√(4h^2+t^2)
t^2h^2-8ht^2+16t^2=16(4h^2+t^2)
t^2h^2-8ht^2-64h^2=0
t^2h-8t^2-64h=0
t^2=72h-4h^2を代入すると、
(72h-4h^2)h-8(72h-4h^2)^2-64h=0
72h-4h^2-576+32h-64=0
4h^2-104h+640=0
h^2-26h+160=0
(h-10)(h-16)=0
h=16
t=8√2
∴S=th/2=64√2=90.5096679919……
81132人目の素数さん
2024/04/10(水) 18:03:39.55ID:ID5XJR/P
絶対値=二乗の正の平方根だからなんとなく納得。

平方和の最小値での最小二乗法の代わりに絶対値の総和最小値で
数値計算しても似たような値がでてくる。
82132人目の素数さん
2024/04/10(水) 19:31:06.26ID:MkFUrfVY
『心に愛が無ければ
スーパーヒーローじゃない』

の対偶は?
83132人目の素数さん
2024/04/10(水) 20:16:11.53ID:1dF1+7/f
聖パウロはヒーローではない
84イナ ◆/7jUdUKiSM
2024/04/10(水) 22:27:27.34ID:FwRU7N5f
>>80
スーパーヒーローなら
心に愛がある
85132人目の素数さん
2024/04/10(水) 22:31:38.40ID:ydnKBiJD
外接円の半径が9で内接円の半径が4である三角形ABCがある。
角A=2α, 角B-角C=2θとするとき
cosθ を sinα の式で表せ。

これはどう考えればいいですか。
86132人目の素数さん
2024/04/10(水) 22:39:43.51ID:IdAGS3wT
r/R + 1
= cos(A) + cos(B) + cos(C)
= cos(A) + 2cos((B+C)/2)cos((B-C)/2)
= 1-2sin²(α) + 2sin(α)cos(θ)
87132人目の素数さん
2024/04/11(木) 00:09:57.07ID:1Px+il29
おおおすごいかっこいい
ありがとうございます
88132人目の素数さん
2024/04/11(木) 01:13:58.54ID:WXD0r9/7
大先生「
R,r,S > 0 について次は同値
(1) (外接円の半径,内接円の半径,面積) = (R,r,S)
となる三角形が存在
(2) -r^3 (r + 4 R)^3 + 2 S^2 (-r^2 + 10 r R + 2 R^2) - S^4/r^2 ≧ 0
89132人目の素数さん
2024/04/11(木) 01:28:03.17ID:pC/q9iVA
 r = 2S/(a+b+c),
 R = abc/(4S),
より
 r/R + 1 = 8SS/{(a+b+c)abc} + 1
  = (b+c-a)(c+a-b)(a+b-c)/(2abc) + 1 …… ヘロンの公式
  = ……
  = (bb+cc-aa)/(2bc) + (cc+aa-bb)/(2ca) + (aa+bb-cc)/(2ab)
  = cos(A) + cos(B) + cos(C),   …… 第二余弦定理

(参考書)
 佐藤淳郎(訳)「美しい不等式の世界」朝倉書店 (2013)
 §2.5 補題2.5.1  p.91
   演習問題2.56  p.94
90イナ ◆/7jUdUKiSM
2024/04/11(木) 06:09:55.83ID:f6sF8BmQ
>>84
>>85
底角2α(∠A=∠B)の直角二等辺三角形(高さh)を描いてみた。
内接円の中心と頂点Aの距離は4/sinα
直角三角形の相似より4cosα/sinα:4=BC:h-4
ピタゴラスの定理より(4cosα/sinα)^2+h^2=BC^2
sin(α-θ)=sinαcosθ-cosαsinθ
=4(1-2sin^2α)/{8-8sin^2α-4(1-2sin^2α)}
=4(1-2sin^2α)/4
=1-2sin^2α
ちょっとここまでしかわからない。
直角二等辺三角形の頂角をAにするとθ=0になって意味わからない。
sin(α-θ)=cosθだとしたら、
cosθ=2cos^2α-1=1-2sin^2α
かもしれない。勘で。
91132人目の素数さん
2024/04/11(木) 06:46:44.78ID:wuL27qV5
1000個Rに描画してみる。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
92132人目の素数さん
2024/04/11(木) 11:23:24.96ID:aNUh4/Pv
「X=x+ 1/x
を満たすxが実数となるような実数Xの値の範囲を求めよ」
という問題で質問です

この問題、両辺にxを掛けて分母払ってxの二次方程式に変えて、xの二次方程式の解の判別式で
X≦-2、2≦Xが答えですが

分母に未知数xがあるので、x=0のケースも考えてx=0だけ別扱いで場合分けしなくてもいいの?
と思ってしまいました
しなくて良いのは何故なのでしょうか?
93132人目の素数さん
2024/04/11(木) 11:26:58.20ID:AC7D69W9
関連問題

外接円の半径が9で内接円の半径が4である三角形ABCがある。
内角の最大値は何度か?有効数字3桁でよい。
94132人目の素数さん
2024/04/11(木) 11:35:29.76ID:6QTdjmYD
>>92

x+ 1/xを満たす という文言で x≠0が暗黙の了解になっているから。
 
95132人目の素数さん
2024/04/11(木) 11:47:43.28ID:1Px+il29
四角形ABCDで
対角線ACが角Bと角Dをどちらも二等分し、
対角線BDが角Aと角Cをどちらも二等分しているとき、
この四角系はひし形といえますか。
96132人目の素数さん
2024/04/11(木) 12:34:37.67ID:aNUh4/Pv
>>94
ありがとうございます
暗黙の了解なのですね。今まで見た参考書にはそういうことが載っていなかったので分かりませんでしたが、しっかり頭に入れておきます

あと、「x+ 1/xを満たす という文言」は「X=」は含まなくてOKですか?
97132人目の素数さん
2024/04/11(木) 13:25:15.34ID:wuL27qV5
>>96
xが実数のとき x+ 1/x とりうる範囲を求めよ、という文章の方が誤解を招かないと思う。
98132人目の素数さん
2024/04/11(木) 13:50:52.65ID:aNUh4/Pv
>>97
ありがとうございます
「誤解を招かない」というのは、元の問題分のことでしょうか?私が書いたレスのことでしょうか?
99132人目の素数さん
2024/04/11(木) 14:08:57.30ID:wuL27qV5
>>98
問題文の話
100132人目の素数さん
2024/04/11(木) 14:09:53.59ID:wuL27qV5
>>95
ACとBDは逆では?
101132人目の素数さん
2024/04/11(木) 14:21:08.73ID:1Px+il29
仰せの通りACとBDが逆でしたすみません。

四角形ABCDで
対角線BDが角Bと角Dをどちらも二等分し、
対角線ACが角Aと角Cをどちらも二等分しているとき、
この四角系はひし形といえますか。

でした。
102132人目の素数さん
2024/04/11(木) 15:12:44.26ID:aNUh4/Pv
>>99
ありがとうございます
103132人目の素数さん
2024/04/11(木) 16:09:13.35ID:wYt1kYFf
>>101
R言語のネタにしてプログラムの練習。

AB=1、∠Aが鋭角な凸四角形として等角条件に合致するように
立式して最小二乗法で数値解を出して作図。

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

成立しそうなことが体感できた。
104132人目の素数さん
2024/04/11(木) 16:35:39.38ID:BqEXCLLV
∫[0,π/2] sinx/(1+√sin2x) dx
を求めよ。
105132人目の素数さん
2024/04/11(木) 17:07:26.49ID:pC/q9iVA
>>101
対角線BDが∠B、∠Dを二等分している。
二角挟辺相等により △BAD ≡ △BCD,
 AB=BC → ∠BAC=∠BCA,
 AD=DC → ∠DAC=∠DCA,
 辺々たして ∠A = ∠C, 
対角線ACが∠A、∠Cを二等分している。
二角挟辺相等により △ABC ≡ △ADC,
 BA=AD → ∠ABD=∠ADB,
 BC=CD → ∠CBD=∠CDB,
 辺々たして ∠B = ∠D,
∴ 対辺が平行である。(平行4辺形)
また 4辺が等しいから、菱形。
106132人目の素数さん
2024/04/11(木) 17:46:43.38ID:/O2TM3Ga
>>103
対角線AC=1にして作図する方が立式が楽なことに気付いたので
再度作成。
∠DACを0~90°で乱数発生させて、角度の条件を満たすように作図。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
B,Dのx座標=0.5をプログラムが返してくる。
107105
2024/04/11(木) 20:05:51.97ID:pC/q9iVA
>>101
 △BAD ≡ △BCD → ∠A = ∠C,
 △ABC ≡ △ADC → ∠B = ∠D,
は明らかだけど、辺長の式も必要なので…
108132人目の素数さん
2024/04/11(木) 20:45:17.98ID:BqEXCLLV
x,y,zは、
0<x≦y≦z
x+y+z=π
を満たす。このとき、
(sinx/siny)+(siny/sinz)+(sinz/sinx)
の最小値が存在するならば、それを求めよ。
109132人目の素数さん
2024/04/11(木) 20:48:03.93ID:pxF2DG7s
AM ≧ GM
110132人目の素数さん
2024/04/11(木) 21:00:15.83ID:/O2TM3Ga
>>106
乱数発生させる必要性はないので0°から90°まで変化させて作図。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
111132人目の素数さん
2024/04/11(木) 21:38:53.36ID:/O2TM3Ga
>>108
最小値なし
(sinx/siny)+(siny/sinz)+(sinz/sinx) > 3
112132人目の素数さん
2024/04/11(木) 21:41:41.73ID:pxF2DG7s
ホントに頭悪いんだな
113132人目の素数さん
2024/04/11(木) 22:49:18.99ID:NAF46hQ9
> f=Vectorize(\(x,y){
+ z=pi-x-y
+ if(x<=y & y<=(pi-x-y)){
+ w=sin(x)/sin(y)+sin(y)/sin(x+y)+sin(x+y)/sin(x)
+ return(w)
+ }else{
+ return(1e16)
+ }
+ })
>
> opt=optim(runif(2,0,pi),\(x) f(x[1],x[2]),)
> while(opt$value>f(1,1)){
+ opt=optim(runif(2,0,pi),\(x) f(x[1],x[2]))
+ }
> opt
$par
[1] 1.046743 1.047364

$value
[1] 3
114132人目の素数さん
2024/04/11(木) 22:49:54.75ID:NAF46hQ9
東大を目指す高校生は罵倒しかレスしないクズ人間になっちゃだめだぞ
115132人目の素数さん
2024/04/11(木) 22:53:31.87ID:/O2TM3Ga
>>111
x=y=z=pi/3
のとき最小値3
116132人目の素数さん
2024/04/11(木) 22:56:14.20ID:2e3xyuht
>>114
それってアンタのこと?
117132人目の素数さん
2024/04/11(木) 23:04:26.01ID:xK64JHhj
∫[0,π/2] sinx/(1+√sin(2x)) dx
= ∫[0,π/2] cosx/(1+√sin(2x)) dx
= (1/2)∫[0,π/2] (sinx+cosx)/(1+√sin(2x)) dx
= (1/2)∫[0,π/2] (√2)sin(x+π/4)/(1+√sin(2x)) dx
= ∫[0,π/4] (√2)cosx/(1+√cos(2x)) dx
= ∫[0,π/4] √(1+cos(2x))/(1+√cos(2x)) dx
置換 cos(2x)=(cost)^2, sin(2x)dx=cost sint dt
= ∫[0,π/2] √(1+(cost)^2)/(1+cost) cost sint dt/√(1-(cost)^4)
= ∫[0,π/2] cost/(1+cost) dt
= ∫[0,π/2] (1 - 1/(1+cost)) dt
= ∫[0,π/2] (1 - (1/2)/cos(t/2)^2) dt
= t - tan(t/2)|_(t=0,π/2)
= (π/2) - 1
118132人目の素数さん
2024/04/11(木) 23:10:03.54ID:/O2TM3Ga
>>104
π/2 - 1

数値積分して検証
> integrate(\(x) sin(x)/(1+sqrt(sin(2*x))),0,pi/2,rel.tol = 1e-12)
0.5707963 with absolute error < 6.8e-13

> pi/2 - 1
[1] 0.5707963
119132人目の素数さん
2024/04/11(木) 23:29:13.12ID:5/nt4Nos
一目AM≧GMが見えない時点でポンコツ確定だけど普通にグラフ描かせても内点で最小値とるの見える
計算機がなんにも使えてない
120イナ ◆/7jUdUKiSM
2024/04/12(金) 04:01:10.90ID:GsVVSMTi
>>90
>>93
最大の角を2φとする二等辺三角形の底角を2θとすると、
底辺の1/2はピタゴラスの定理より√(9^2-4^2)=√65=8.0……
sinθ=4/9だからcos^2θ=1-16/81=65/81=(1+cos2θ)/2
cos2θ=2cos^2θ-1=130/81-1=49/81
とくになし。
余弦定理よりcos2φ=[2{(81√65)/49}^2-(2√65)^2]/[2{(81√65)/49}^2]
=(2・81^2・65-4・65・49^2)/(2・81^2・65)
=(81^2-2・49^2)/81^2
=(6561-2・2401)/6561
=1759/6561
=0.26809937509……
cos74.45°=0.26807920042……
cos74.44°=0.26824734081……
74.44°<2φ<74.45°
∴△ABCの内角の最大値の有効数字3桁は74.4°
121イナ ◆/7jUdUKiSM
2024/04/12(金) 04:03:18.86ID:GsVVSMTi
>>120
>>73
2√65
122132人目の素数さん
2024/04/12(金) 06:21:33.16ID:tOkrCPMl
応用問題 (二等分の条件を緩和)
四角形ABCDで 対角線BDが角Bと角Dをどちらも二等分し、
対角線ACが角Aを二等分しているとき、 この四角形は菱形といえますか。
123132人目の素数さん
2024/04/12(金) 06:32:39.34ID:drdB+PmN
>>120
レスありがとうございます。
プログラムで算出した想定解は
> B2maxA(opt$maximum,TRUE)*180/pi
[1] 83.62063
で83.6°
作図すると
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
124132人目の素数さん
2024/04/12(金) 07:29:39.28ID:EJkwA63Z
頭悪いなぁ
125132人目の素数さん
2024/04/12(金) 09:15:45.16ID:+aIJZesR
今気づいたんだが、132番目の素数=743でナナシサンって読ませるのね。
上手いなぁ。
126132人目の素数さん
2024/04/12(金) 09:37:36.61ID:+aIJZesR
>>122
ACとBDの交点をPとして、
ΔABP ≡ ΔCBP ≡ ΔCDP ≡ ΔADP
になるのがわかる。
(なぜなら、角ABP=角CBP、、、で、
角APB=角CPD、角BPC=角DPA、
三角形の内角の和=180° ( π )
なのを使うと、角ABP+角BAP = 角CDP+角DCP、角ADP+角DAP = 角CBP+角BCP がわかる。
だから、これを使って合同になることも分かる。)

簡単だけど、念のためやってみると案外頭の体操になるね。
127132人目の素数さん
2024/04/12(金) 09:47:09.81ID:+aIJZesR
高校生の諸君へ。
フェルマーの小定理、つまり以下を示せるかやってみて欲しい。

素数 p に対し、自然数 n をpで割り切れないとする。
この時、n^(p-1) ≡ 1 (mod p) となる。


赤チャートなんかには、問題としてしれっと載っていたと思う。
自分が高一の時だったかな、初見では出来なかったけど…。
128132人目の素数さん
2024/04/12(金) 11:17:22.54ID:W3OozUMf
>>73
面積最小のとき >>58 >>66
 BC ≦ 8√5 = 17.88854382
 ∠A ≦ arccos(1/9) = 2arcsin(2/3) = 83.62062979°
129132人目の素数さん
2024/04/12(金) 13:08:53.80ID:AAEWs28S
>>122
R言語で検証

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

対角線ACの長さを1としてAを原点とする。
直線DAの傾きをpとする。
Dのx座標をxdとすると
DCを結んで∠ADCの二等分線と直線y = -pxの交点をBとする。
∠ABD-∠CBD=0となるようにxdを決定する。

するとpの値によらずxd=0.5となる。
これをプログラムで確認。

calc=\(deg,verbose=FALSE){
theta=deg*pi/180
A=0i
C=1+0i
p=tan(theta)
f=\(xd){
D=xd+1i*p*xd
IC=incircle(A,C,D)
I=IC[1]
B=intsect(D,I,A,1-p*1i)
angle(D,B,A)-angle(D,B,C)
}
f=Vectorize(f)
xd=uniroot(f,c(1e-12,1),tol=1e-16)$root
if(verbose){
D=xd+1i*p*xd
IC=incircle(A,C,D)
I=IC[1]
B=intsect(D,I,A,1-p*1i)
print(c(AB=abs(A-B),BC=abs(B-C),CD=abs(C-D),DA=abs(D-A)))
}
xd
}
calc=Vectorize(calc)
∠DACを1°から89°までで実行
calc(1:89)

> calc(1:89)
[1] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
[24] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
[47] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
[70] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5
130132人目の素数さん
2024/04/12(金) 13:27:11.31ID:W3OozUMf
>>127
 1≦k≦p-1 かつ (k,p)=1 である k が φ(p) 個あったとする。
 このとき φ(p)個の k・n はいずれも pと互いに素で、また
どの2つも (pを法として) 合同ではない。
 k (pと互いに素) に対して、k'・n≡k となる k' (pと互いに素) が1個ずつある。
それらをすべて掛けると
 n^φ(n) Π k' ≡ Πk   (mod p)
 n^φ(n) ≡ 1    (mod p)

https://mathlandscape,com/fermat-little/
131132人目の素数さん
2024/04/12(金) 13:30:14.96ID:W3OozUMf
訂正
 n^φ(p) Π k' ≡ Πk   (mod p)
 n^φ(p) ≡ 1    (mod p)
φ( ) は オイラの totient函数
132132人目の素数さん
2024/04/12(金) 14:09:09.69ID:W3OozUMf

pが素数であることは使いませんでした。
本質的なことではないので…
133132人目の素数さん
2024/04/12(金) 15:07:12.90ID:u6is2KPU
https://oshiete.goo.ne.jp/qa/13764454.html 永遠の中2帰国子(女)
134132人目の素数さん
2024/04/12(金) 16:17:05.05ID:W3OozUMf

整数問題
(1) 3^n = k^3 + 1 を満たす正の整数組(k,n)を全て求めよ。
(2) 3^n = k^2-40 を満たす正の整数組(k,n)を全て求めよ。
  千葉大学医学部の過去問らしい。

 https://imgur,com/a/Z1D69MG
135132人目の素数さん
2024/04/12(金) 17:27:39.67ID:EkJkC1be
>>114
ただの自己紹介で草
136132人目の素数さん
2024/04/12(金) 17:28:43.70ID:sZbW4DJq
>>127
二項定理の拡張
(x1+x2+..+xn)^p = Σ[k1+k2+...+kn=p] (p!/(k1!k2!...kn!)) x1^k1 x2^k2 ...xn^kn
においてpを素数、x1=x2=...=xn=1とすると、p!/(k1!k2!...kn!)はki=pのときを除きpで割り切れるから
n^p ≡ 1^p+1^p+...+1^p ≡ n (mod p)
137132人目の素数さん
2024/04/12(金) 18:59:50.07ID:drdB+PmN
>>134
(1)  (2 2)
(2) (2 7) (4 11)
138132人目の素数さん
2024/04/12(金) 19:15:18.14ID:tOkrCPMl
>101の条件は過剰だったようだな。
対角線で3つの内角が二等分されていれば十分だった。
139132人目の素数さん
2024/04/12(金) 19:29:37.17ID:i4jnL7Jd
△ABCのABの中点をL、BCの中点をM、CAの中点をNとする。
△ABCの周および内部を動く点Pがあり、T=(PL+PM+PN)/(PA+PB+PC)とする。
Tの取りうる値の範囲を求めよ。
140132人目の素数さん
2024/04/12(金) 21:22:50.96ID:W3OozUMf
>>133,134
(1)
 3^n = k^3 + 1
  = (k+1)(kk-k+1)
  = (k+1){(k+1)^2-3(k+1) + 3},
∴ k+1 = 3^{p+1},  (p≧0)
 (右辺) = 3^{p+1} (3^{p+2}(3^p-1) + 3)  … (A)
(A) が3の累乗で表わせるためには
 3^p-1 = 0,
 p = 0,
 k = 2,
 n = 2.

(2)
 (-1)^n ≡ 3^n = kk-40 ≠ -1 (mod 4)
∴ n = 2m,  (偶数)
∴ -40 = 3^n-kk = (3^m +k)(3^m -k),
 3^m ≦ 40-k < 40 より
 m = 1, 2, 3,
 n = 2. 4. 6,
 k = 7, 11, なし.
141132人目の素数さん
2024/04/13(土) 06:48:04.33ID:QTt1vO79
>>135
罵倒 > 助言 (Phimose草の不等式)

東大入試にでるかもしれんw
142132人目の素数さん
2024/04/13(土) 07:23:38.36ID:OrZY0B6w
朝飯前の練習問題

n,k,mを100以下の正整数とする
3^n=k^2-mが複数の解を持つようなmの値を述べよ。
143132人目の素数さん
2024/04/13(土) 07:31:31.98ID:OrZY0B6w
応用問題

n,k,mを100以下の正整数とする
3^n=k^3+mが複数の解を持つようなmの値を述べよ
144132人目の素数さん
2024/04/13(土) 07:48:40.14ID:OrZY0B6w
>>141
東大入試予想問題w

以下を和訳せよ。
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
145132人目の素数さん
2024/04/13(土) 08:46:13.09ID:npT+CEhB
>>141
phimoseも罵倒もアンタの自己紹介なんでしょ?
146132人目の素数さん
2024/04/13(土) 09:05:27.04ID:OrZY0B6w
>>145
草 = foreskinいじりでくさくなった Phimoseくんの常套句。
147132人目の素数さん
2024/04/13(土) 09:57:34.75ID:A7e6sXLw
相変わらず日本語通じてないね尿瓶ジジイ
アンタみたいなチンパン笑わずにはいられないからw
148132人目の素数さん
2024/04/13(土) 10:09:08.51ID:QNaR07Rc
◆当選確率1/10000000 の宝くじ

10枚を1日で購入するのと

1枚づつ10日に分けて購入するのとで

当選確率に差はありますか?
149132人目の素数さん
2024/04/13(土) 11:53:24.26ID:THFrSUq1
>>139
三角形の形に依存するのでは?
150132人目の素数さん
2024/04/13(土) 12:08:59.07ID:THFrSUq1
WolframのIntegerDigits関数をRに実装。
10進数 n をb進法表示の数列に変換する

IntegerDigits=\(n,b) n%/%b^(floor(log(n)/log(b)):0) %% b

IntegerDigits(2024,10)
IntegerDigits(2024,2)
IntegerDigits(2025,8)
151132人目の素数さん
2024/04/13(土) 20:09:15.94ID:K9Qs0Ux5
>>150
関連問題

n!を2進法で表したときの桁数をm[n]とする。

 5! = 120 = 1 1 1 1 0 0 0(2進法)なので7桁。
 即ち m[5]=7
数列 m[1],m[2],...,m[2023],m[2024]
で先頭の数字として最も多く現れる数字は1~9のいずれかを述べよ。
現れる頻度順に1~9の数字を並べよ。
あらゆるリソースを用いてよい。
152132人目の素数さん
2024/04/14(日) 01:43:39.13ID:qwERWQHx
>>151
スレチかもしれないけど最小限の環境(小型マイコン)で計算してみた
言語はC

$ cat fact.c

#include<stdio.h>
#include<math.h>
int main() {
long N,n,i[10]={0,0,0,0,0,0,0,0,0,0};
double lfac=0,mn;
scanf("%ld",&N);
for(n=1;n<=N;n++){
lfac+=log(n);
for(mn=floor(lfac/log(2)+1+1e-12);mn>=10;mn/=10);
i[(int)mn]++;
}
for(n=1;n<=9;n++)printf("%ld %ld\n",i[n],n);
return 0;
}

$ gcc -O2 -Wall fact.c -lm -o fact
$ echo 2024 | ./fact | sort -g
115 9
117 8
119 7
120 6
124 5
128 4
131 3
140 2
1030 1

さらに1から1000000までの結果
$ echo 1000000 | ./fact | sort -g
59655 9
60133 8
60685 7
61325 6
62090 5
63037 4
64260 3
65987 2
502828 1
153132人目の素数さん
2024/04/14(日) 03:54:29.80ID:T4z17oY+
>>152
>>152
力作のレスありがとうございます。

Wolfram言語での結果

m=Table[Length[IntegerDigits[n!,2]],{n,2024}]
b=Table[First[IntegerDigits[a]],{a,m}]
Table[Count[b,c],{c,1,9}]

In[3]:= Table[Count[b,c],{c,1,9}]

Out[3]= {1030, 140, 131, 128, 124, 120, 119, 117, 115}
と合致しました。

Benfordの法則が成り立っています。
154132人目の素数さん
2024/04/14(日) 04:14:14.25ID:T4z17oY+
順位はみてのとおり
In[9]:= d=Table[Count[b,c],{c,1,9}]

Out[9]= {1030, 140, 131, 128, 124, 120, 119, 117, 115}

In[10]:= d

Out[10]= {1030, 140, 131, 128, 124, 120, 119, 117, 115}

In[11]:= Ordering[d]

Out[11]= {9, 8, 7, 6, 5, 4, 3, 2, 1}
155132人目の素数さん
2024/04/14(日) 05:15:47.10ID:T4z17oY+
飲酒や喫煙は高校生には禁じられているが、プログラムは禁じられていない。
LGBTが叫ばれる昨今では不純異性交際は微妙w

朝飯前の問題

素数を小さい順に100万個集める。
先頭の数字として現れる数字を頻度の多い順に並べなさい。

あらゆるリソースを用いてよい。
156132人目の素数さん
2024/04/14(日) 05:37:39.50ID:T4z17oY+
Rでの算出
> tbl
1 2 3 4 5 6 7 8 9
415441 77025 75290 74114 72951 72257 71564 71038 70320
> order(tbl,decreasing = TRUE)
[1] 1 2 3 4 5 6 7 8 9


Wolframscriptでの算出
In[30]:= a=Table[Count[Table[First[IntegerDigits[n]], {n, Prime[Range[10^6]]}],m],{m,9}]

Out[30]= {415441, 77025, 75290, 74114, 72951, 72257, 71564, 71038, 70320}

In[31]:= Reverse[Table[Range[9][[i]],{i,Ordering[a]}]]

Out[31]= {1, 2, 3, 4, 5, 6, 7, 8, 9}

Benfordの法則が成立している。

東大合格者による他言語での検証を希望します。
157132人目の素数さん
2024/04/14(日) 06:26:34.13ID:KAPnCPO9
>>151-153
明らかにスレチだし明らかに自演だよね
158132人目の素数さん
2024/04/14(日) 07:10:18.58ID:T4z17oY+
>>157
自演だったら俺がC言語の達人ということになるのだが、

受験板ではないので問題の意味が高校数学の範囲で理解できれば許容される。
小学校の算数や図形の問題を方程式や三角関数を使って解いても構わない。
159132人目の素数さん
2024/04/14(日) 07:29:28.93ID:1U/RnNK4
小学生の算数に方程式や三角関数でドヤられても恥ずかしい大人なだけじゃん
散々スルーされても分からないんだね、だから自演なんかやるんだ
しかも自分のこと達人とか言って笑
160132人目の素数さん
2024/04/14(日) 08:18:36.65ID:T4z17oY+
>>147
草 多用する理由は図星。
Q.E.D.
161132人目の素数さん
2024/04/14(日) 08:38:59.77ID:1U/RnNK4
>>160
一回使っただけで多様?アホなん?w
162132人目の素数さん
2024/04/14(日) 09:25:10.95ID:qwERWQHx
152は151,153とは別人で、単に大きな階乗の計算は対数とれば簡単に計算できることを示したかっただけです。
スレを荒らしてしまったようですまない。
163132人目の素数さん
2024/04/14(日) 09:43:43.74ID:T4z17oY+
宝くじまとめ買いの問題

宝くじ1万枚が1枚2500円で売り出され、うち20枚が当たりである。
当たれば1枚につき賞金100万円がもらえる。
一度に10枚買って当たりが1枚でもあればそこで終了。
1枚も当たらなければ残りの9990枚から10枚を買う。
それでも当たらなければ残りの9980枚から10枚を買う。
以下同様に、少なくとも1枚の当たりがでるまで買い続ける。
(1) 獲得賞金-購入総額の期待値と中央値を求めよ。
(2) 1枚いくらであれば期待値が0になるか求めよ。

あらゆるリソースを用いてよい。

例 Rで乱数発生させてのシミュレーション
N=10000
n=20
m=10

sim=\(){
i=1
L=rep(0:1,c(N-n,n))
j=sum(sample(L,m))
while(j==0){
L=rep(0:1,c(N-n-m*i,n))
j=sum(sample(L,m))
i=i+1
}
c(i,j)
}
k=1e5
ij=t(replicate(k,sim()))
hist(ij[,1])
summary(ij[,1])
table(ij[,2])

f=\(x,price=2500,award=1e6){
-price*x[1]*m+award*x[2]
}
profit=apply(ij,1,f)
summary(profit)

(colSums(ij)[2]*10^6)/(m*colSums(ij)[1])
164132人目の素数さん
2024/04/14(日) 09:53:10.13ID:T4z17oY+
>>161
日本語が不自由な実例。

>一回使っただけで多様
多様 
多様   
多様    
多様       

アホなん?w
165132人目の素数さん
2024/04/14(日) 09:57:12.09ID:T4z17oY+
>>162
Cだと浮動小数点数をつかうから
floor(lfac/log(2)+1+1e-12)とかの工夫が必要になってきますよね。
Rも同様なので大きな数字を扱うときは丸め誤差がでてきます。
166132人目の素数さん
2024/04/14(日) 10:00:09.95ID:SzjJa5LD
>>153
>>Benfordの法則が成り立っています。

どこが成立?
単に、順位が逆転していないことを以て成立と言っている?

法則によれば、先頭の数字が 1 になるのは 3 割程度
2024までの結果では5割を越えている
10^6までの結果でも4割を越え、これは誤差の範囲ではない。

原因は、明白だが、理解している?

指摘されなければ、見向きもしなかっただろう。ただ高級な道具を与えられ遊んでいるだけ。
このようなことをやっている人物に、新発見や進歩など望むべくもない。
167132人目の素数さん
2024/04/14(日) 10:01:00.75ID:T4z17oY+
>>163
期待値は負で中央値は正という、ギャンブルとしては良心的な価格設定。
CやPythonの使える東大合格者による検証を期待します。
168132人目の素数さん
2024/04/14(日) 11:22:14.19ID:CqnVU4YK
>>165
wwwwwwwwwwwwwwwwwwww
169132人目の素数さん
2024/04/14(日) 12:37:41.98ID:1IJEb63F
https://oshiete.goo.ne.jp/qa/13764454.html 永遠の中2帰国子(女)
170132人目の素数さん
2024/04/14(日) 12:43:59.56ID:T4z17oY+
>>166
順位が1,2,3..8,9になれば広義のBenfordの法則が成立。
1が最頻でも超広義のBenfordの法則が成立。p
171132人目の素数さん
2024/04/14(日) 12:47:12.44ID:T4z17oY+
>>166
罵倒 > 助言 の Phimose草の不等式も成立!

解説
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
172132人目の素数さん
2024/04/14(日) 12:55:15.06ID:CqnVU4YK
毎回必ずアホな事書いて恥かかないと死ぬ病気wwwwwwwwwwwwwwwwwww
173132人目の素数さん
2024/04/14(日) 13:35:40.83ID:1U/RnNK4
>>164
沸点低すぎない?
どんだけ余裕ないんだよw
そんなに嬉しいなら沢山草つけてやろうか?ww
174132人目の素数さん
2024/04/14(日) 15:07:11.15ID:T4z17oY+
>>163
仕様書をみながらWolfram言語に移植してみた。推敲歓迎。

sim := (
n0=10000;
n=n0;
n20=20;
n10=10;
count=1;
atari=Total[Boole[Table[RandomInteger[n,n10][[i]] <= n20,{i,n10}]]];
While[atari==0,n-=20;count++;atari=Total[Boole[Table[RandomInteger[n,n10][[i]] <= n20,{i,n10}]]]];
li={count,atari}
)

k=10^5
re=Table[sim,k]
p=2500
a=1000000
balance=Table[-p*n10*re[[i,1]]+re[[i,2]]*a,{i,k}]
N[Mean[balance]]
N[Median[balance]]
175132人目の素数さん
2024/04/14(日) 15:42:56.56ID:T4z17oY+
>>174
自己推敲

sim := (
n0=10000;
n=n0;
n20=20;
n10=10;
count=1;
atari=Total[Boole[Table[RandomInteger[n,n10][[i]] <= n20,{i,n10}]]];
While[atari==0,n-=n10;count++;atari=Total[Boole[Table[RandomInteger[n,n10][[i]] <= n20,{i,n10}]]]];
li={count,atari}
)

k=10^5
re=Table[sim,k]
p=2500
a=1000000
balance=Table[-p*n10*re[[i,1]]+re[[i,2]]*a,{i,k}]
N[Mean[balance]]
N[Median[balance]]
176132人目の素数さん
2024/04/14(日) 16:01:13.29ID:T4z17oY+
>>163
追加の課題

一度の1枚ずつ当たりがでるまで購入した場合の損益の期待値と中央値を求めて
10枚の場合と比較せよ。

>148の設定だと面白くないので改題して計算してみた。
Wolfram言語の課題として役立った。
177132人目の素数さん
2024/04/14(日) 16:20:35.12ID:T4z17oY+
>>173
つまり、
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
でいいってことだな。
178132人目の素数さん
2024/04/14(日) 16:21:03.26ID:T4z17oY+
>>173
他スレでの英単語スペルミスをコピペして世論でいるのが
Phimoseくん。
179132人目の素数さん
2024/04/14(日) 17:09:17.84ID:TQbd33b9
>>142
kk-3^n = m,
が複数の解をもつようなmの例

m  (n,k)
13 (1,4) (5,16)
22 (1,5) (3,7) (7,47)
40 (2,7) (4,11)
46 (1,7) (5,17)
55 (2,8) (6,28)
112 (2,11) (6,29)
117 (3,12) (7,48)
118 (1,11) (5,19)
198 (5,21) (9,141)
280 (2,17) (4,19)
286 (1,17) (5,23)
360 (4,21) (6,33)
414 (3,21) (7,51)
481 (1,22) (9,142)
495 (4,24) (8,84)
567 (2,24) (6,36)
598 (3,25) (5,29)
622 (1,25) (7,53)
781 (1,28) (5,32)
838 (1,29) (7,55)
952 (2,31) (6,41)
180132人目の素数さん
2024/04/14(日) 18:37:48.40ID:prKeV3wM
◆1ユニット1000万枚の宝くじ

1ユニットに1等1億円が1枚入っている

売れ残りのくじは
当選者unknownとして廃棄される

販売期間は30日間
全国1000箇所のチャンスセンターで
販売される

全てのくじが売れた場合
1等1億円の当選確率は1/10000000
(一枚だけ購入した時)

一回で10枚購入するのと
1日1枚づつ10日かけて購入するのとで

1等の当選確率に差は生じるか?
181132人目の素数さん
2024/04/14(日) 19:18:49.23ID:1U/RnNK4
草生やされる度に発狂w

そもそもnurseの複数形もろくに綴れないチンパンがなんでチンパン英語なんか使ってるの?
182132人目の素数さん
2024/04/14(日) 19:25:20.47ID:1U/RnNK4
尿瓶ジジイID:T4z17oY+お得意のチンパン英語とくとご覧あれ

724 卵の名無しさん (ワッチョイ 3358-8TD4 [14.13.16.0])[sage] 2022/10/05(水) 13:30:27.35 ID:rczEbvNg0
I told my colleage nureses that I have such allergy to beauties that I feel itchy everywhere when I work with them.
Ahahahahahah

>colleage
>nureses

920 卵の名無しさん (JP 0H52-BsRZ [217.138.212.122 [上級国民]])[sage] 2023/03/24(金) 15:55:12.52 ID:sCq5Ou+HH
先々週のseptick shockの患者、懇意なナースに聞いたらもう食事が始まっていますよと教えてくれた。
夜遅くまで麻酔をかけたのが報われた感じで気分が( ・∀・)イイ!!
報酬も良かったし

>septick shock

nurseの複数形すらろくに綴れないアホキモチンパンジジイwそれ以降また間違ってアホを晒さないために毎回ナースと日本語しか使わなくなったとさ
実に残念なオツムであった
183132人目の素数さん
2024/04/14(日) 19:32:01.80ID:T4z17oY+
>>142
100以下なら31組
1 : 2 1 1
2 : 3 1 6
3 : 4 1 13
4 : 4 2 7
5 : 5 1 22
6 : 5 2 16
7 : 6 1 33
8 : 6 2 27
9 : 6 3 9
10 : 7 1 46
11 : 7 2 40
12 : 7 3 22
13 : 8 1 61
14 : 8 2 55
15 : 8 3 37
16 : 9 1 78
17 : 9 2 72
18 : 9 3 54
19 : 10 1 97
20 : 10 2 91
21 : 10 3 73
22 : 10 4 19
23 : 11 3 94
24 : 11 4 40
25 : 12 4 63
26 : 13 4 88
27 : 16 5 13
28 : 17 5 46
29 : 18 5 81
30 : 28 6 55
31 : 47 7 22
184132人目の素数さん
2024/04/14(日) 19:32:31.75ID:T4z17oY+
>>143
解なし
185132人目の素数さん
2024/04/14(日) 19:34:22.45ID:T4z17oY+
>>182
他スレでのスペルミスをいつまでも掲げて悦にいっている
Phimoseくんが東大合格者だと思うひとはその旨を投稿してください。
俺はシリツだと思うが。
186132人目の素数さん
2024/04/14(日) 19:35:43.88ID:T4z17oY+
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
187132人目の素数さん
2024/04/14(日) 19:45:12.63ID:T4z17oY+
>>182
よくできたジョークだと感心。
188132人目の素数さん
2024/04/14(日) 20:00:12.07ID:1U/RnNK4
>>185
ぐうの音も出ないのね、こんな初歩的なミスしてw
しかも複数w
189132人目の素数さん
2024/04/14(日) 20:01:15.09ID:1U/RnNK4
>>187
アホ晒されて発狂してるのに自画自賛とかどこまで頭の中お花畑なの?やっぱり統失なの?w
190132人目の素数さん
2024/04/14(日) 21:27:20.04ID:7Zt24lhc
y=x^2 とか y=e^x みたいな、下に凸な曲線(Cとします)があるとしますね。
またCより上側に定点Aがあるとします。
Aを通る直線を、直線がCと2点で交わる範囲で動かすとき、
直線とCで囲まれる領域の面積が最小になるのは
 Aが2つの交点の中点になるとき
と言えそうな気がするんですが、一般にこれは正しいですか。
191132人目の素数さん
2024/04/14(日) 22:33:27.35ID:CqnVU4YK
正しい
192132人目の素数さん
2024/04/14(日) 23:08:26.01ID:TQbd33b9
>>190
点Aの座標を(a,b)とし、Aを通る傾きmの直線を
 y = m(x-a) + b とする。
曲線Cを y = f(x) とし、f(x) は連続とする。
交点 P, Q のx座標 p(m), q(m) は mに関して微分可能とする。

直線とCで囲まれる領域の面積は
 S(m) = ∫[p(m), q(m)] {m(x-a)+b-f(x)} dx,
これをmで微分すれば
 dS/dm = -(dp/dm) {m(p-a)+b-f(p)} + (dq/dm){m(q-a)+b-f(q)}
     + ∫[p,q] (x-a) dx
   = ∫[p,q] (x-a) dx        (*)
   = [ (1/2)(x-a)^2 ](p→q)
   = (1/2){(q-a)^2 - (p-a)^2}
   = (1/2)(q-p)(q+p-2a),
ここで 点P, Qが交点であること:
 m(p-a)+b-f(p) = 0, m(q-a)+b-f(q) = 0,
を使った。

さて、あるmで S(m)が極値をとるならば dS/dm = 0,
交点は2つあるので p<q,
∴ q + p -2a = 0,
∴ A は PQ の中点になる。    (終)

(参考書)
高木貞治:「解析概論」改訂第三版, 岩波書店 (1961)
 p.164 下 ~ p.165 上
 "α" がここに云うmにあたる。
193132人目の素数さん
2024/04/14(日) 23:19:36.18ID:LzJRApHc
d/dθ∫[θ-π/2,θ+π/2]r^2/2dθ
=r(θ+π/2)-r(θ-π/2)
194132人目の素数さん
2024/04/14(日) 23:26:38.49ID:TQbd33b9
>>142 は、
 一つのmに対して複数の解 (n,k) が存在するもの、
 m = 13, 22, 40, 46, 55 が該当しますね。
195132人目の素数さん
2024/04/15(月) 06:58:37.40ID:c1EB406w
Wolframscriptで遊ぶ朝飯前の問題

3の剰余系で
1^2≡1
2^2≡1
の1種類である。

4の剰余系で1,2,3を累乗すると2もしくは3種類である.
5の剰余系で1,2,3,4を累乗していくと2乗で2種類、3乗で4種類、4乗で1種類になる。

nの剰余系で1,2,,..,n-1を累乗していくとき1種類になるような2以上の整数nの集合をNとする。
Nを小さい順に並べれて行くとき2024番目の要素を求めよ。
196132人目の素数さん
2024/04/15(月) 07:54:12.97ID:c1EB406w
>>180
他に買う人はいないという設定?
197132人目の素数さん
2024/04/15(月) 07:54:37.69ID:c1EB406w
>>180
他に買う人はいないという設定?
198132人目の素数さん
2024/04/15(月) 07:55:24.10ID:c1EB406w
Wolframscriptで遊ぶ朝飯前の問題

3の剰余系で
1^2≡1
2^2≡1
の1種類である。

4の剰余系で1,2,3を累乗すると2もしくは3種類である.
5の剰余系で1,2,3,4を累乗していくと2乗で2種類、3乗で4種類、4乗で1種類になる。

nの剰余系で1,2,,..,n-1を累乗していくとき1種類になるような2以上の整数nの集合をNとする。
Nを小さい順に並べて行くとき2024番目の要素を求めよ。
199132人目の素数さん
2024/04/15(月) 08:44:18.68ID:sn/DTjPe
頭の悪さが溢れ出てるなwwwwwwwww
200132人目の素数さん
2024/04/15(月) 08:49:33.77ID:BCQUcGPL
というか趣味の悪さ
201132人目の素数さん
2024/04/15(月) 09:03:30.29ID:sn/DTjPe
自分で考えた文章を第三者目線で見れない人間の作りそうな文章の典型例やなww
202132人目の素数さん
2024/04/15(月) 10:26:49.61ID:9dAbYngt
罵倒 > 助言 の Phimose草の不等式が次々と実証されてますなぁ
解説
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.

内視鏡バイト終了。
今日はEGD初めての人が3人もいたが上手に検査を受けてくれた。
いつも通り検査中に所見を説明。
ナースが画面上で指差してくれるので捗って(・∀・)イイ!!。
タクシーチケットも1冊支給される有料職場。
203132人目の素数さん
2024/04/15(月) 13:19:28.62ID:wB4VYegQ
>>192 曲線Cが下に凸という条件は不要ということですか。
204192
2024/04/15(月) 13:41:31.97ID:nqVJC6nR
はい。

>>193 さんのように 点Aを極とする極座標を使い、
C: r = g(θ)
とした方が簡単なようですが…

いずれの場合も 1価性は必要でしょうね。
205132人目の素数さん
2024/04/15(月) 15:22:55.14ID:VvPBy/lo
「三角形ABCにおいてAC>BCであり、AB=3,BC=2,cos∠BAC=7/9とする」
で、この後にACやsin∠BACやABCの外接円の半径(中心をOとする)を求めるなどの設問があって

「外接円Oの、点Bを含まない弧AC上に点DをAD=DCになるように取る。線分ODとACの交点をEとすると」
で、以降の解答が
ODとACが垂直に交わるというのが前提で進んでいるんですが、これが垂直になる理由の説明がなく、詰まっています

垂直になる理由を説明いただけると嬉しいです
206132人目の素数さん
2024/04/15(月) 16:06:04.69ID:wB4VYegQ
Dは弧ACのど真ん中の点だからほぼ明らかなのでは? (図を、ACが手前にくるように置いてみたら)

Dは弧ACのど真ん中の点だから角AOD=角COD。
だからOD(OE)は二等辺三角形OACの頂角Oの二等分線。
207132人目の素数さん
2024/04/15(月) 16:39:36.90ID:VvPBy/lo
ありがとうございます

確かに、三角形OADと三角形OCDは、頂点がO(円の中心)と底辺(それぞれADとCD)が共通で
それぞれの三辺の長さも等しいので合同。したがって、角AOE=COEとなり、角の二等分線になりますね
しかも半径でAO=COなので、EはACの中点で、頂点Oから底辺ACの中点に線を下ろすことになるので垂線になる

やはり垂直になりますね
208132人目の素数さん
2024/04/15(月) 17:16:15.70ID:1MQQ3hNK
>>202
有料職場って何?
やっぱり数学どころか日本語不自由なチンパン丸出しだねw
209132人目の素数さん
2024/04/15(月) 17:38:06.81ID:kQk9moCL
>>196
他にも多数の購入者がいる

販売初日よりも10日後、
10日後よりも最終日のほうが
明らかにくじは少なくなる

この状況下で
一枚づつ日を変えて10枚購入するか
一回で10枚購入するのかで

一等の当選確率に変化は起こるか?
というお題
210132人目の素数さん
2024/04/15(月) 18:09:45.12ID:AGWhs6OB
DがJordan凸領域だけでは

(1) r(θ+π/2)+r(θ-π/2)が最小
(2) r(θ+π/2) = r(θ-π/2)

は(1)⇒(2)しか言えない
Dが凸関数f(x)によってy≧f(x)で与えられるなら逆も言える
211132人目の素数さん
2024/04/15(月) 18:19:42.76ID:OUGySYIH
理系の板はワッチョイとか付けられないのか?
変なのが居着いてるじゃねえか
212132人目の素数さん
2024/04/15(月) 19:07:50.99ID:38gXiuBd
またまた、
罵倒 > 助言 の Phimose草の不等式が実証されてますなぁ
解説
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
213132人目の素数さん
2024/04/15(月) 19:17:33.77ID:MVXFUpXF
また日本語不自由なのを指摘されて発狂w
214132人目の素数さん
2024/04/15(月) 20:28:51.71ID:VUd/SPP+
質問です。
(x + y + 2)(x - y + 2)
の展開で与式を
= (x + A)(x - A)
= x^2 - A^2
= x^2 - (y + 2)^2
= x^2 - (y^2 + 4y + 4)
= x^2 - y^2 - 4y - 4
と計算しましたが間違ってました。
正解は
= (x + 2 + y)(x + 2 - y)
= (A + y)(A - y)
= A^2 - y^2
= (x + 2)^2 - y^2
= x^2 + 4x + 4 - y^2
でした。
疑問点は
① y + 2 を A と置いてはだめなのか?その理由はなんなのか?
② -(y + 2)^2 は{ -1 * (y + 2)^2 }={ -y^2 + 4y + 4 }と計算すべきだったか?
という点です。
よろしくお願いいたします。
215132人目の素数さん
2024/04/15(月) 21:03:10.71ID:nqVJC6nR
① y+2 = B とおくと
 (与式) = (x+B)(x+4-B)
  = xx + 4x + B(4-B)
  = xx + 4x + (2+y)(2-y)
  = xx + 4x + 4-yy,
でもダメぢゃないけど、ちょっと面倒だ。
 (和の半分)^2- (差の半分)^2
を使うのがラク。

② -(y+2)^2 = -(yy+4y+4)
 はこれでよい。
216132人目の素数さん
2024/04/15(月) 21:29:34.26ID:fPMqine1
>>215
レスありがとうございます。


(x+B)(x+4-B)

(x+B)(x-B)ではないのですか?
+4はなぜ加えて良いのでしょうか?


わかりました。
217132人目の素数さん
2024/04/15(月) 23:35:09.02ID:EUcNUtE5
>>210
の(1)は

(1)∫[θ-π/2,θ+π/2](1/2)r(θ)^2dθ が最小
218215
2024/04/16(火) 00:21:37.00ID:02gDREfj
>>216
① それが問題だ...
219132人目の素数さん
2024/04/16(火) 02:51:44.72ID:DnAfhObi
>>218
わからないですよぉ
教えてくらさい
220132人目の素数さん
2024/04/16(火) 07:17:02.79ID:zrlvndwL
>>198
Wolfram言語で算出を試みる

f1[n_] := Table[Mod[a^b,n],{b,n-1},{a,n-1}]
f2[n_] := Table[Union[li],{li,f1[n]}]
f3[n_] := Table[Length[f2[n][[m]]],{m,n-1}]
f4[n_] := Min[f3[n]]
n=2; m=1; While[m<2024,n++; m=m+Boole[f4[n]==1]]
n
数が大きすぎて計算が終わらないw

想定解は17599
1種類になることなら確認できる。
fn[n_] := Table[Mod[a^(n-1),n],{a,n-1}] // Union
fn[17599]

In[20]:= fn[17599]

Out[20]= {1}

東大合格者による検証を希望します。
Rを馬鹿にしていたPhimoseくんってWolframのスクリプトくらい書けないの?
221132人目の素数さん
2024/04/16(火) 07:32:48.16ID:yptNX5Dl
>>209
当選しているかどうかは販売中にはわからないなら
何枚購入したかにだけによって決まると思うが。
222132人目の素数さん
2024/04/16(火) 07:37:37.56ID:5lE9z/9s
>>219
y+2がAなんだろ
つまりyはA-2だろ
ちゃんと代入しろよ
223132人目の素数さん
2024/04/16(火) 08:22:09.89ID:xLkfiiS3
日本語不自由なのにwolframとか豚に真珠もいいところ
224132人目の素数さん
2024/04/16(火) 09:39:30.06ID:dTcuSQje
文章がおかしくて意味が通じない
頭悪いやつがプログラム始めるとこうなる
文法的におかしな文章書いても計算機はとりあえず動いてくれるのであまり考えないで文章作るクセがつく
ある程度の知能があれば防げるが閾値以下の知能だと永遠に転がり落ちる
225132人目の素数さん
2024/04/16(火) 10:27:56.91ID:zrlvndwL
登録すればテキストベースのWolframScriptが使えるので
ダウンロードしてインストール
Rに移植して遊ぶ

正整数 n を b 進法の数列にして出力するWolframの関数 IntegerDigits

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= IntegerDigits[2024,2]

Out[1]= {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}

IntegerDigitsをRにone-linerとして移植

IntegerDigits=\(n,b) (n%/% (b^(floor(log(n)/log(b)):0))) %% b
> IntegerDigits(2024,2)
[1] 1 1 1 1 1 1 0 1 0 0 0


再度、RからWolframにone-linerとして再移植

In[2]:= integerdigits[n_,b_] := Table[Mod[e,b],{e, Table[Quotient[n,d],{d,Table[b^c,{c,Reverse[Range[0,Floor[Log[n]/Log[b]]]]}]}] }]

In[3]:= integerdigits[2024,2]

Out[3]= {1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0}
226132人目の素数さん
2024/04/16(火) 10:44:45.31ID:zrlvndwL
これは正しいか?


nを2以上の整数とし、mを1,2,3,...,n-2,n-1とする.
どのmについても m^(n-1) ≡ 1 (mod n)となるのは nが素数のときに限る。

Wolframで体感

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= f[n_] := Table[Mod[m^(n-1),n],{m,1,n-1}]

In[2]:= f[17]

Out[2]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

In[3]:= f[19]

Out[3]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

In[4]:= f[23]

Out[4]= {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
227132人目の素数さん
2024/04/16(火) 10:45:35.73ID:zrlvndwL
>>223
罵倒 > 助言 の Phimose草の不等式が次々と実証されてますなぁ

解説
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
228132人目の素数さん
2024/04/16(火) 11:04:45.30ID:zrlvndwL
>>224
>文法的におかしな文章書いても計算機はとりあえず動いてくれる
普通はエラーメッセージがでるぞ。
括弧対応を自動修正してくれたりするのもあるけど。

Log[Sin[Pi-1]を入力するとWolframalpha.comは括弧を補完して計算値を出力してくれるが、
Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)だと何も出力されない。

人間なら誤字脱字は脳内変換や脳内補完できるはずなんだが、
Phimoseくんにはそれができないらしい。
229132人目の素数さん
2024/04/16(火) 11:18:16.20ID:zrlvndwL
>>224
>220のコードが読めれば>198の意味がわかるはず。
Wolframで計算が終了するように>220の改変を希望。
230132人目の素数さん
2024/04/16(火) 12:26:46.23ID:yYpojJZp
>>228
自分のこと医者だとかそれも脳内変換してるの?w
231132人目の素数さん
2024/04/16(火) 12:31:22.03ID:xLkfiiS3
草の不等式とかどこのチンパン算数だよ笑
232132人目の素数さん
2024/04/16(火) 13:05:04.63ID:02gDREfj
>>226
nが約数d (1<d<n) をもてば
 d^{n-1} と n は公約数 d>1 をもつから
 d^{n-1} ≠ 1   (mod n)
233132人目の素数さん
2024/04/16(火) 14:47:02.40ID:puDwkr/w
>>230
医師が羨ましいなら再受験すればいいのに
同期は2~3割は再受験組だった。
ほとんど東大卒か京大卒。
阪大は学士入学制度があったから阪大卒はいなかったな。
歯学部には東大数学科卒もいた。
234132人目の素数さん
2024/04/16(火) 14:48:26.41ID:puDwkr/w
>>231
草が多用される理由。
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
235132人目の素数さん
2024/04/16(火) 15:02:12.74ID:7gGe0Okf
>>220
UnionもLengthもMinもいらない。
O(n^2)のメモリもいらない。

count=0;
Do[
For[flag=1;k=1,flag==1 && k<n,k++,If[Mod[k^(n-1),n]==1,Null,flag=0]];
If[flag==1,count++;Print[{count,n,Prime[count]}],Null];
,{n,2,18000}]


k=1,2,3,...,n-1に対し、Mod[k^(n-1),n]==1 となるような n を見つけたら、
countを1アップして、countとnとPrime[count]を表示する。
これでもかなり遅いが、正常には動く。
236イナ ◆/7jUdUKiSM
2024/04/16(火) 16:16:41.43ID:TfmndFPE
>>121
>>73
求める辺の長さをaと内角をαとすると、
これらが最大となるとき三角形は、
底辺の長さがaで頂角がαの二等辺三角形で、
内接円の中心と外接円の中心の距離をdとすると、
二等辺三角形の高さは9+4-d
ピタゴラスの定理より底辺の半分は、
a/2=√{9^2-(4-d)^2}
α/2の角を共通に持つ直角三角形の相似により、
4:a/2=√{(9-d)^2-4^2}:9-d+4
4:√{81-(16-8d+d^2)}=√{81-18d+d^2-16}:13-d
4(13-d)=√{(65+8d-d^2)(65-18d+d^2)}
16(169-26d+d^2)=65^2-650d-d^2(144-26d+d^2)
d^4-26d^3+160d^2+234d-1521=0
(d-3)(d^3-23d^2+91d+507)=0
d=3
a/2=√(81-1)=√80=4√5
∴a=8√5
二等辺三角形の高さは9+4-3=10だから、
余弦定理より、
cosα=[2{10^2+(4√5)^2}-(8√5)^2]/[2{10^2+(4√5)^2}]
=(360-320)/360
=1/9
=0.1111111111……
cos83.6206297922°=0.1111111111
∴α=83.6°
237132人目の素数さん
2024/04/16(火) 17:08:43.41ID:ZdfS6U2G
>>233
尿瓶ジジイって自分の都合の悪いことは全部スルーなんだね
なんでほとんどスルーされてるか分からないのか?
238132人目の素数さん
2024/04/16(火) 17:33:38.95ID:RRexi8To
>>235
それだと1種類になるのは(n-1)乗であるという前提での計算ではないですか?
239132人目の素数さん
2024/04/16(火) 17:36:18.08ID:sfg23OwZ
tは0<t<π/2かつcost=1/3を満たす実数とする。

(1)cos2t,cos3tを求めよ。

(2)tは無理数であることを示せ。
240132人目の素数さん
2024/04/16(火) 18:44:53.55ID:RRexi8To
>>237
罵倒 > 助言 の Phimose草の不等式の実証乙。

東大合格者が>236で俺の出題に解答をレスしていますなぁ。
241132人目の素数さん
2024/04/16(火) 18:47:49.98ID:ZdfS6U2G
何を持って東大合格者()なんだよ?
卒業証書でも出したのか?それともアンタと同じ自称か?
242132人目の素数さん
2024/04/16(火) 19:05:14.19ID:RRexi8To
>>239
R言語での小数解
> t=uniroot(\(x) cos(x)-1/3,c(1,pi/2),tol = 1e-16)$root
> cos(2*t)
[1] -0.7777778
> cos(3*t)
[1] -0.8518519
243132人目の素数さん
2024/04/16(火) 19:07:20.58ID:RRexi8To
>>241
東大合格していたらそんな疑問は投稿しないよなぁ。
医師国試の合格率とかに言及するのは裏口容疑者のシリツ医。
Phimoseくんはシリツなんだろ?
244132人目の素数さん
2024/04/16(火) 19:12:02.49ID:RRexi8To
>>238
>226を前提にしたら
In[1]:= Prime[2024]

Out[1]= 17599
で終了。
245132人目の素数さん
2024/04/16(火) 19:29:28.55ID:ZdfS6U2G
>>243
結局ダンマリでただの自称かよw
アンタが日本語不自由でまともに相手にされてないアホだってことはとっくにバレてるのにいつまで発狂してんだよ?
246132人目の素数さん
2024/04/16(火) 19:58:00.07ID:ZdfS6U2G
医者板でも数学板の高校生にもまともに相手にされるどころかバカにされ続けるのがそんなに楽しいかID:RRexi8To尿瓶ジジイw
247132人目の素数さん
2024/04/16(火) 20:17:06.14ID:VAYBAG+F
高校数学の質問スレ Part433
http://2chb.net/r/math/1709503076/654-655

答えられないID:RRexi8Toは東大非合格者
248132人目の素数さん
2024/04/16(火) 22:25:34.50ID:7gGe0Okf
>>238
その前提で組んだけど、(n-1)乗固定ではないのなら、ちょっとだけ改変

count=0;
Do[
For[flag=1;k=1,flag==1 && k<n,k++,If[Mod[k^m,n]==1,Null,flag=0]];
If[flag==1,count++;Print[{count,n,m,Prime[count]}],Null];
,{n,2,18000},{m,1,n-1}]


与えられた、mとnに対し、k=1,2,3,...,n-1と変化しても、常に、Mod[k^m,n]==1なら、出力
249132人目の素数さん
2024/04/16(火) 22:31:31.05ID:PS6G+v8E
正の数列がn無限大のときに0に収束するとき、
逆数の数列は無限大になることは明らかとしていいでしょうか。
250イナ ◆/7jUdUKiSM
2024/04/16(火) 23:04:01.51ID:TfmndFPE
>>236
>>239
(1)cos2t=2cos^2t-1
=2(1/3)^2-1
=2/9-1
=-7/9
cos3t=4cos^3t-3cost
=4(1/3)^3-3(1/3)
=4/27-1
=-23/27
251132人目の素数さん
2024/04/16(火) 23:06:43.52ID:+4sNyMxI
いい
252132人目の素数さん
2024/04/16(火) 23:32:42.78ID:ZdfS6U2G
尿瓶ジジイビビってリアタイでタコ殴りにされそうな夜は書き込めないみたいだね、実に哀れ
リアタイだと余計日本語不自由なのバレバレだからねw
↓早朝から発狂しまくる尿瓶ジジイww
253132人目の素数さん
2024/04/17(水) 01:40:24.58ID:qbH/8Fwh
↑ まだ朝ぢゃねぇけど……


>>249
任意の正の実数kに対し、1/k も正の実数である。
 a(n) → 0    (n→∞)
だから、ある自然数N(k) があって
 n>N ⇒ |a(n)| < 1/k ⇔ |1/a(n)| > k,
∴ {1/a(n)} は有界ではなく、発散する。

明らかとしていいか? いいかな
254132人目の素数さん
2024/04/17(水) 01:49:44.61ID:qbH/8Fwh
>>239 (2)
 0<t<π/2
だから t は radianで計るんですね。(度ではなく)
255132人目の素数さん
2024/04/17(水) 03:22:20.64ID:Dojom4Xi
それだと求める数は素数であるという前提になっていませんか?
256132人目の素数さん
2024/04/17(水) 04:31:36.98ID:lcKlVVMX
以下は正しいか?

p,qを2以上の整数とする。
2^q≡3^q≡...≡(p-3)^q≡(p-2)^q≡(p-1)^q (mod p)
が成立するのはpが素数でq=p-1のときに限る。

また、その逆は正しいか?


2^12≡3^12≡...≡(13-3)^12≡(13-2)^12≡12^12 (mod 13)
257132人目の素数さん
2024/04/17(水) 04:39:39.44ID:Zy64aN7b
bakaage
258132人目の素数さん
2024/04/17(水) 07:01:47.87ID:Ec1zJCxR
pの剰余系で2,3,...,p-2,p-1を累乗したときに現れる剰余の種類の最低値を求める。

例: 7の剰余系で1,2,3,4,5,6の6乗はすべて1 (mod 7)

In[1]:= Table[Mod[n^6,7],{n,1,6}]

Out[1]= {1, 1, 1, 1, 1, 1}


100までで計算すると

f1[n_] := Table[Mod[a^b,n],{b,1,n-1},{a,2,n-1}]
f2[n_] := Table[Union[li],{li,f1[n]}]
f3[n_] := Table[Length[f2[n][[m]]],{m,n-1}]
f4[n_] := Min[f3[n]]
Table[f4[n],{n,2,100}]

Out[10]= {0, 1, 2, 1, 3, 1, 2, 2, 3, 1, 4, 1, 3, 3, 2, 1, 4, 1, 4, 3, 3, 1, 4, 2, 3, 2, 4, 1, 7, 1, 2,

> 3, 3, 3, 4, 1, 3, 3, 4, 1, 7, 1, 4, 4, 3, 1, 4, 2, 4, 3, 4, 1, 4, 3, 4, 3, 3, 1, 8, 1, 3, 4, 2, 3,

> 7, 1, 4, 3, 7, 1, 4, 1, 3, 4, 4, 3, 7, 1, 4, 2, 3, 1, 8, 3, 3, 3, 4, 1, 8, 3, 4, 3, 3, 3, 4, 1, 4,

> 4, 4}

Wolframだと0^0は未定義 Indeterminate expression 0 encountered なので0種類が帰ってきた。
1種類になるのはすべて素数のときになっている。
259132人目の素数さん
2024/04/17(水) 08:04:59.74ID:lwglMa0M
こんなしょうもない話ひとつ日本語で正しく定式化する事ができない
260132人目の素数さん
2024/04/17(水) 08:05:02.20ID:rVe+J1Qo
a,bを正整数とする。
ab-a-b=2024のときの(a-b)^2はいくつになるか、可能な数値を列挙せよ。
ab-a-b=12345のときの(a-b)^2を列挙せよ。
261132人目の素数さん
2024/04/17(水) 08:22:13.65ID:Ec1zJCxR
>>260
Wolframの練習にsolverを作成

solve[n_] := (
d=Divisors[n+1];
a1=d[[1;;Ceiling[Length[d]/2]]];
b1=(n+1)/a1;
(a1-b1)^2)


solve[2024]
solve[12345]
solve[123456789]

In[52]:= solve[123456789]

Out[52]= {15241578750190521, 3810394502362449, 609662912970609, 152415543057561, 11133119776689,

> 2783094764121, 445087788201, 111086890209}

Rだとoverflowしてしまうが計算してくれて( ・∀・)イイ!!
まあ、検証できないがw
262132人目の素数さん
2024/04/17(水) 08:25:21.70ID:Ec1zJCxR
Rで書くと
> solve=\(n){
+ d=numbers::divisors(n+1)
+ ab=cbind(d,rev(d))[1:ceiling(length(d)/2),]+1 ; ab
+ apply(ab,1,\(x) diff(x)^2)
+ }
> solve(2024)
[1] 4096576 451584 160000 46656 14400 3136 2304 0
> solve(12345)
[1] 152399025 38081241
> solve(123456789)
[1] 15241578750190520 3810394502362449 609662912970609 152415543057561
[5] 11133119776689 2783094764121 445087788201 111086890209
263132人目の素数さん
2024/04/17(水) 08:27:33.07ID:Ec1zJCxR
答はひとつの問題の方が面白いかもしれん

練習問題
a,bを正整数とする。
ab-a-b=1234567890のときの(a-b)^2はいくつになるか
264132人目の素数さん
2024/04/17(水) 12:32:41.55ID:Dojom4Xi
昼食後の問題

a,b,cはa>=b>=cの正整数とする。
a^6+b^6+c^6=666 を満たすa,b,cの組み合わせは何個あるか?
個数を答えてもよいし、総列挙してもよい。
265132人目の素数さん
2024/04/17(水) 13:03:49.82ID:sOk9OM5G
>>252が図星すぎて尿瓶ダンマリ決め込んでて草
266132人目の素数さん
2024/04/17(水) 13:46:50.26ID:SUrDbMTo
△ABCの垂心をHとし、AHと直線BCの交点をL、BHと直線CAの交点をM、CHと直線ABの交点をNとする。

mid(x,y,z)でx,y,zのうち2番目に大きくない値を表すとき、
f(△ABC)=mid(BL,CM,AN)/mid(AB,BC,CA)
とする。

△ABCの形状がいろいろ変わるとき、f(△ABC)の取りうる値の範囲を求めよ。
267132人目の素数さん
2024/04/17(水) 13:48:39.93ID:SUrDbMTo
定積分
∫[1,e] {log(x)}^3 dx
を求めよ。ここで対数の底はeである。
268132人目の素数さん
2024/04/17(水) 15:11:31.34ID:Dojom4Xi
a,b,c,d,e,fを正整数とするとき
a^6+b^6+c^6+d^6+e^6+f^6 = 666666 をみたすa,b,c,d,e,fは存在しないことを示せ。
あらゆるリソースを用いてよい。
269132人目の素数さん
2024/04/17(水) 15:12:17.56ID:lwglMa0M
2番目に大きくない値
wwwwwwwwwwwwwwww
270132人目の素数さん
2024/04/17(水) 15:17:29.16ID:Dojom4Xi
>>267
部分積分を数回使って 6 - 2e
271132人目の素数さん
2024/04/17(水) 15:44:17.39ID:Dojom4Xi
>>266
R言語で作図の練習
鈍角三角形のときは垂心が三角形の外にくる。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
10万回の結果
> summary(y)
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0005697 0.4075665 0.6779041 0.6423093 0.9227072 1.0000000
予想は 0超過1未満

東大合格者による検証を希望します。
272132人目の素数さん
2024/04/17(水) 16:36:23.28ID:fXJPsOzb
y=sin(x)-sin(x-120°)

これって簡単にするとy=sin(x-30°)みたいになるよね?
位相がズレるだけでsin波のまま

導出はそうやるの?
273132人目の素数さん
2024/04/17(水) 17:00:26.92ID:fXJPsOzb
和積まで辿り着いたがうまくきれいにならん
274132人目の素数さん
2024/04/17(水) 17:12:57.17ID:NlOGF2tm
おいおい、和積まで辿り着けたなら当てはめるだけだろ
あとは、二項めを加法定理でばらした後に合成をするという手もある
275132人目の素数さん
2024/04/17(水) 20:52:03.69ID:qbH/8Fwh
>>263
 (a-1)(b-1) = 1234567891 = p,
 {a,b} = {0,1-p}, {2,1+p},
 (a-b)^2 = (p-1)^2,

>>264
 なし

>>267
 x=e^t とおくと
 (与式) = ∫[0,1] (t^3)(e^t)dt dt
    = [ (t^3 -3tt + 6t -6)e^t ](0→1)
    = 6-2e,

>>268
 6乗数 1, 64, 729, 4096, 15625, 46656, 117649, 262144, 531441, …


>>272-273
和積公式で
 y = sin(x) + sin(x+60°)
 = 2 cos(30°) sin(x+30°)
 = (√3) sin(x+30°)
276132人目の素数さん
2024/04/17(水) 23:39:05.03ID:p8T6m3Aw
mod 7
277132人目の素数さん
2024/04/18(木) 01:23:02.16ID:wAg8T1zy
フェルマーの小定理から、
 x≠0 (mod 7) のとき x^6 ≡ 1  (mod 7)
 x≡0 (mod 7) のとき x^6 ≡ 0  (mod 7)

∴ (a~f の内 7で割り切れないものの数)
  ≡ mod(a^6 + b^6 + …… + f^6, 7)

本題では
  = mod(666666, 7)
  = 0.
∴ a~f はすべて7で割り切れる。

一方、a^6 + b^6 + …… + f^6 = 666666 は 7^6 で割り切れない
∴ a~f の中に 7で割り切れないものがある。(矛盾)
278132人目の素数さん
2024/04/18(木) 06:08:06.65ID:fdnCKW9N
>>275-277
レスありがとうございます。
次々とほぼ想定した正解がレスされて感服しました。
279132人目の素数さん
2024/04/18(木) 06:36:29.24ID:64Io791z
座標を固定して描画させようとすると三角形がはみだしたり、小さすぎてみえないので
三角形に合わせて座標の表示幅を調整するように改変。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

シミュレーションして遊ぶ問題
三角形ABCがありBCの長さは1である。
内角∠Bを0<B<πの範囲で無作為に選ぶ
内角∠Cは三角形ABCが成り立つ範囲で無作為に選ぶ
三角形ABCの面積の期待値があればそれを求めよ。
280132人目の素数さん
2024/04/18(木) 07:17:28.21ID:64Io791z
朝飯前の問題

整数の6乗の剰余系での値が0または1になるような剰余系を求めよ。

例:

2の剰余系なら自明

7の剰余系なら
フェルマーの小定理から、>277の通り
 x≠0 (mod 7) のとき x^6 ≡ 1  (mod 7)
 x≡0 (mod 7) のとき x^6 ≡ 0  (mod 7)
281132人目の素数さん
2024/04/18(木) 09:01:24.10ID:64Io791z
>266の
>△ABCの形状がいろいろ変わるとき、f(△ABC)の取りうる値の範囲を求めよ。
に触発されて作図して遊ぶ。

問題
△ABCがあり、B,Cの座標はB(0,0),C(1,0)とする。△ABCの面積が1であるようにAが動く。
例:高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

(1)△ABCの重心の図形を求めよ
(2)△ABCの外心の図形を求めよ
(3)△ABCの内心の図形を求めよ
(4)△ABCの垂心の図形を求めよ

あらゆるリソースを使ってよい。
282132人目の素数さん
2024/04/18(木) 15:16:12.44ID:wAg8T1zy
BC = 1,
面積S = BC*(Aから辺BC(の延長線)に下した垂線の長さ)/2
   = BC*(Aの高さ)/2,

題意より S=1 で Aの高さは2, A(a, ±2)

(1) 重心G ((1+a)/3, ±2/3)
   軌跡: 2直線 y=-2/3, y=2/3,

(2) 外心O (1/2, ±(aa-a+4)/4),
   軌跡: 半直線 x=1/2, |y|≧15/16 (R≧17/16)

(3) 内心I ({1+√[1 + 2(aa-a+4) -2√{4+(aa-a+4)^2}]}/2, r)
283132人目の素数さん
2024/04/18(木) 16:00:59.54ID:J4j+GBSH
cot(2B) + cot(2C) = const.
284132人目の素数さん
2024/04/18(木) 16:03:38.05ID:J4j+GBSH
cot(B) + cot(C) = const.
285132人目の素数さん
2024/04/18(木) 16:08:29.87ID:wAg8T1zy
内心I ( [1 + √(4+aa) + √(4+(1-a)^2)]/2, r)
 r = 1 - [√(4+aa)-a] [√(4+(1-a)^2)-(1-a)]/4,
かなぁ
286132人目の素数さん
2024/04/18(木) 16:44:56.97ID:A0DnVcfS
小学校級の質問ですまん、小数第一位を四捨五入ってどこをすんのやっけ
例えば、29.28を小数第一位を四捨五入しなさい、って言われたら29になるん?それとも29.3?
287132人目の素数さん
2024/04/18(木) 16:45:00.46ID:A0DnVcfS
小学校級の質問ですまん、小数第一位を四捨五入ってどこをすんのやっけ
例えば、29.28を小数第一位を四捨五入しなさい、って言われたら29になるん?それとも29.3?
288132人目の素数さん
2024/04/18(木) 16:51:32.01ID:wAg8T1zy
(4) 垂心H (a, a(1-a)/2)
 軌跡: 放物線 y = x(1-x)/2,


>>284
 cot(B) + cot(C) = 1/2.
289132人目の素数さん
2024/04/18(木) 20:04:50.54ID:bS3aQA9Q
>>287
小学生以下なのは問題文の日本語すら読めない誰かさんだよw
290132人目の素数さん
2024/04/18(木) 20:09:56.04ID:64Io791z
レスありがとうございます。

R言語で作図
G(黒)が重心、O(赤)が外心、I(緑)が内心、H(青)が垂心の位置。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
291132人目の素数さん
2024/04/18(木) 20:12:55.42ID:64Io791z
>>287
小数第一位を四捨五入なら29
四捨五入して小数第一位まで表示なら29.3
292132人目の素数さん
2024/04/18(木) 20:17:41.01ID:64Io791z
Wolfram言語に慣れるための練習問題

https://www.jstor.org/stable/3611701
の素数の一般項をWolframに1行で実装せよ。

想定解
prime[n_] := 1 + Total[Table[Floor[(n/( Total[Table[Floor[Cos[(Factorial[k-1]+1)Pi/k]^2],{k,1,m}]]))^(1/n)],{m,1,2^n}]]

Wolfram言語に詳しい方の検証を希望。
293132人目の素数さん
2024/04/18(木) 20:21:27.33ID:J4j+GBSH
きったね
294132人目の素数さん
2024/04/18(木) 20:36:56.27ID:64Io791z
>>285
乱数発生させて一つの辺長1で面積1の三角形の内心と内接円を描画。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
295132人目の素数さん
2024/04/18(木) 20:42:30.17ID:64Io791z
>>288
y=±x(1-x)/2を追加描画
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
296132人目の素数さん
2024/04/18(木) 20:47:52.52ID:J4j+GBSH
きったねwwwwwwwww
297132人目の素数さん
2024/04/18(木) 21:21:17.91ID:64Io791z
四捨五入のネタ 

Wolframで四捨五入類似の関数Roundの仕様 (R言語も同様の出力をする)

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= Round[2.5]

Out[1]= 2

In[2]:= Round[3.5]

Out[2]= 4

問題 小数表示された実数の小数第n位を四捨五入する関数aroundを作成せよ。

動作例

In[5]:= around[2.5]

Out[5]= 3.

In[6]:= around[3.5]

Out[6]= 4.

In[7]:= around[3.141592,5]

Out[7]= 3.1416
298132人目の素数さん
2024/04/18(木) 21:35:00.91ID:sdwGNJDt
Table[1+Sum[Floor[n^(1/n) (Sum[Floor[(Cos[Pi(((x-1)!+1)/x)])^2],{x,1,m}])^(-1/n)],{m,1,2^n}],{n,1,10}]
Table[1+Sum[Floor[n^(1/n) (Sum[If[IntegerQ[((x-1)!+1)/x],1,0],{x,1,m}])^(-1/n)],{m,1,2^n}],{n,1,10}]
Table[1+Sum[Floor[n^(1/n) (1+Sum[If[PrimeQ[x],1,0],{x,2,m}])^(-1/n)],{m,1,2^n}],{n,1,10}]

実質これらは同じもの。下に行くほど速い。
ただし、第一の式は、素数を10個表示するだけで、10秒近くかかる
299132人目の素数さん
2024/04/18(木) 21:43:07.35ID:fGxo4U0J
うちの学校の先生が
「ベクトルとベクトルの交わりとか交点とか、そういうものは定められない」
と言ってたんですが、参考書とかみると交点をベクトルで表せという問題が
普通にあります。
ウチの先生は信用できないんでしょうか。
300132人目の素数さん
2024/04/18(木) 21:43:31.50ID:64Io791z
>>291 補足

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= (* 小数表示された実数の小数第 n 位を四捨五入する *)

In[2]:= around[m_,n_:1] := (
a=m*10^(n-1);
x=a-Floor[a];
y=Floor[a] + Boole[x >= 0.5];
N[y/10^(n-1)]
)

In[3]:= around[0.12345,3]

Out[3]= 0.12

In[4]:= (* 四捨五入して小数第 n 位まで表示する *)

In[5]:= around[m_,n_:1] := (
a=m*10^n;
x=a-Floor[a];
y=Floor[a] + Boole[x >= 0.5];
N[y/10^n]
)

In[6]:= around[0.12345,3]

Out[6]= 0.123

In[7]:=
301132人目の素数さん
2024/04/18(木) 22:01:07.73ID:64Io791z
>>298
レスありがとうございます。
Total[Table .... は Sumで簡略化できることがわかりました。
他の人のコードを読むのは勉強になります。
302132人目の素数さん
2024/04/18(木) 22:05:51.72ID:64Io791z
>>299
ベクトルを方向をしめす量という意味に使えば、
「ベクトルとベクトルの交わりとか交点とか、そういうものは定められない」
は正しい。
例: 法線ベクトルの交点 

始点と終点をきめたベクトルなら交点は定められる。
303132人目の素数さん
2024/04/18(木) 22:09:01.17ID:TMqzfafP
位置ベクトルは点を表す。
点と点の交点とか考えないだろ。
304132人目の素数さん
2024/04/19(金) 00:40:09.99ID:ZbwJ8GFs
「0<θ<π。sin3θ=sin2θが成立するとする」と問題にあり、

答ページを見たら「sinθ=sin4θも成立する」とありました

サラリと書いていますが、なぜイコールになると分かるのか解説を読んでも理解できません
何故でしょうか?
305132人目の素数さん
2024/04/19(金) 00:44:35.49ID:cMZorH98
θ=π/5になるから
306132人目の素数さん
2024/04/19(金) 01:18:10.31ID:ZbwJ8GFs
>>305
あ、そうか
分かりました。単位円に36度と144度を書けば自明ですね

あと、この問題の続きで
4cos二乗θ=2cosθ
と解説にありますが、このイコールはどうやって出てきたのでしょうか?
307132人目の素数さん
2024/04/19(金) 01:25:07.02ID:0gWkPqXI
>>282, 288
オイラー線
 y = m{x-(1+a)/3} + 2/3,
ここに m = {3a(1-a)/4-1}/(a-1/2),
 x(H) = a, x(G) = (1+a)/3, x(O) = 1/2,

>>285
I ( [1 + √(4+aa) - √(4+(1-a)^2)]/2, r)
308132人目の素数さん
2024/04/19(金) 02:49:36.51ID:0gWkPqXI
>>306
0 = 2 cos(5θ/2) cos(θ/2)
 = cos(3θ) + cos(2θ)    …… 積和公式
 = (4c^3-3c) + (2cc-1)  …… 3倍角、倍角公式
 = (c+1)(4cc-2c-1),
θ≠(奇数)π, cosθ +1 ≠ 0,
∴ 4(cosθ)^2 = 2cosθ + 1,
309132人目の素数さん
2024/04/19(金) 03:21:51.14ID:v95awPtr
>>304
θ=π/5, (3/5)π
310132人目の素数さん
2024/04/19(金) 03:34:27.32ID:v95awPtr
π - 2θ = 3θ
π - 2θ +2π = 3θ
311132人目の素数さん
2024/04/19(金) 04:25:57.18ID:ZbwJ8GFs
>>308-3107
ありがとうございます!
312132人目の素数さん
2024/04/19(金) 09:44:06.39ID:nLTXbGeR
aを実数の定数とする。
(cosx)^2+a*(cosx)+√(1-a^2)=0
を満たす実数xが少なくとも1つ存在するとき、aが満たすべき条件を求めよ。
313132人目の素数さん
2024/04/19(金) 11:55:08.40ID:uW4yUc1h
Wolfram言語に慣れるための問題
m,nを正整数として sin(mθ)=solve(mθ),0<θ<πの解を算出する関数を作成せよ。


In[2]:= solve[m_,n_] := (a=(m+n+1)/2;
Table[(2b-1)Pi/(m+n),{b,1,Floor[a]-Boole[IntegerQ[a]]}])

In[3]:= solve[2,3]

Pi 3 Pi
Out[3]= {--, ----}
5 5
314132人目の素数さん
2024/04/19(金) 12:25:22.53ID:cgSaTQnW
>>313
60年以上生きて日本語も不自由なんだから今更無理だろ
315132人目の素数さん
2024/04/19(金) 12:30:53.51ID:VXmOPAjX
関数の漸近線の定義を教えて下さい

例えば y = (1/x) sin(1/x) においてy軸は漸近線ですか?
316132人目の素数さん
2024/04/19(金) 13:06:06.66ID:0gWkPqXI
求めるものは
 f(t) = tt + at + √(1-aa) = 0, -1≦t≦1
を満たす実数tが少なくとも1つ存在する条件である。

(根号内)≧0 より -1≦a≦1,
 f(-1) = 1-a + √(1-aa) ≧ 0,
 f(1) = 1 + a + √(1-aa) ≧ 0,
軸のx座標 =-a/2 は [-1/2,1/2] に含まれる。
よって求める条件は
 f(-a/2) = -aa/4 + √(1-aa) ≦ 0,
 aa ≧ 4√(1-aa),
 a^4 ≧ 16(1-aa),
 4φ^{-3} = 4(√5-2) ≦ aa ≦ 1,
 2φ^{-3/2} ≦ |a| ≦ 1,
ここに
 φ^{-1} = (√5-1)/2 = 0.618034
317132人目の素数さん
2024/04/19(金) 13:44:00.12ID:lIooDX5a
二次関数の頂点を求める過程で、平方完成の後、係数を元に戻すのを忘れてしまう
318132人目の素数さん
2024/04/19(金) 13:53:42.51ID:xQljC2Pa
作図する方が楽しい問題

△ABCは、Bは原点(0,0),Cはx軸上にあり、面積1を保ちながら変化する。
外心、内心、垂心の図形を描写せよ。
答は、文章でも式でも図示でもよい。
319132人目の素数さん
2024/04/19(金) 14:11:36.05ID:xQljC2Pa
>>313

練習問題

sin(20θ)=sin(24θ), 0<θ<πを満たすθを求めよ。
320132人目の素数さん
2024/04/19(金) 14:15:00.83ID:50uXZMSr
x→∞のとき 
 x+sin(x) は正の無限大に発散
 x*sin(x) は新道
であってますか。
321132人目の素数さん
2024/04/19(金) 14:47:46.53ID:uue+hBo/
>>298
三つともデタラメな式
wolframフォームに入力しても何も出ない
322132人目の素数さん
2024/04/19(金) 15:11:18.45ID:v95awPtr
b=cos(x)
b^2 + ab + sqrt(1-a^2) = 0
b1=(-a + sqrt(a^2-4*sqrt(1-a^2)))/2
b2=(-a - sqrt(a^2-4*sqrt(1-a^2)))/2
a^2-4*sqrt(1-a^2) >=0
-1 <= a <= -2*sqrt( sqrt(5) -2 ) | 2*sqrt( sqrt(5) -2) <= a <=1
then
-1<= b1,b2 <= 1
323132人目の素数さん
2024/04/19(金) 15:18:41.90ID:xQljC2Pa
>>321
Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)をインストール(要登録)していれば以下のように表示される。


Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= Table[1+Sum[Floor[n^(1/n) (Sum[Floor[(Cos[Pi(((x-1)!+1)/x)])^2],{x,1,m}])^(-1/n)],{m,1,2^n}],{n,1,10}]

Out[1]= {2, 3, 5, 7, 11, 13, 17, 19, 23, 29}


拙作の関数でも

In[2]:= prime[n_] := 1 + Total[Table[Floor[(n/( Total[Table[Floor[Cos[(Factorial[k-1]+1)Pi/k]^2],{k,1,m}]]))^(1/n)],{m,1,2^n}]]

In[3]:= prime[11]

Out[3]= 31

と11番目の素数が表示される。
324132人目の素数さん
2024/04/19(金) 16:33:26.12ID:SVQ+clD4
素数なら、superPCM関数の方が
はるかに強力だよ

◆101から463の範囲に
素数は65個

101, 103, 107, 109, 113,
127, 131, 137, 139, 149,
151, 157, 163, 167, 173,
179, 181, 191, 193, 197,
199, 211, 223, 227, 229,
233, 239, 241, 251, 257,
263, 269, 271, 277, 281,
283, 293, 307, 311, 313,
317, 331, 337, 347, 349,
353, 359, 367, 373, 379,
383, 389, 397, 401, 409,
419, 421, 431, 433, 439,
443, 449, 457, 461, 463,

◆superPCM関数
Table[Product[(2n-1)^(C(0,3-a))
C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}]

{0, 101, 103, 0, 107, 109, 0, 113,
0, 0, 0, 0, 0, 0, 127, 0, 131, 0, 0,
137, 139, 0, 0, 0, 0, 149, 151, 0,
0, 157, 0, 0, 163, 0, 167, 0, 0, 173,
0, 0, 179, 181, 0, 0, 0, 0, 191, 193,
0, 197, 199, 0, 0, 0, 0, 0, 211, 0, 0,
0, 0, 0, 223, 0, 227, 229, 0, 233, 0,
0, 239, 241, 0, 0, 0, 0, 251, 0, 0, 257,
0, 0, 263, 0, 0, 269, 271, 0, 0, 277,
0, 281, 283, 0, 0, 0, 0, 293, 0, 0, 0,
0, 0, 0, 307, 0, 311, 313, 0, 317, 0,
0, 0, 0, 0, 0, 331, 0, 0, 337, 0, 0, 0,
0, 347, 349, 0, 353, 0, 0, 359, 0, 0,
0, 367, 0, 0, 373, 0, 0, 379, 0, 383,
0, 0, 389, 0, 0, 0, 397, 0, 401, 0, 0,
0, 409, 0, 0, 0, 0, 419, 421, 0, 0, 0,
0, 431, 433, 0, 0, 439, 0, 443, 0, 0,
449, 0, 0, 0, 457, 0, 461, 463}


◆的中率100%
325132人目の素数さん
2024/04/19(金) 17:42:59.61ID:0gWkPqXI
>>307
オイラー線
 y = m{x-(1+a)/3} + 2/3,
ここに m = {3a(1-a)/4-1}/(a-1/2),

 H (a, a(1-a)/2)
 K ((2a+1)/4, 1/2 + a(1-a)/8)
 G ((a+1)/3, 2/3)
 O (1/2, 1-a(1-a)/4)
 L (1-a, 2-a(1-a))

K:9点円の中心 (HOの中点)  HK =KO,
 軌跡:放物線 y = x(1-x)/2 + 13/32,

L:de Longchamp点  HO = OL,
 軌跡:放物線 y = 2-x(1-x),

HK:KG:GO:OL = 3:1:2:6
326132人目の素数さん
2024/04/19(金) 18:09:56.02ID:0gWkPqXI
>>319
0 = sin(24θ)-sin(20θ) = 2sin(2θ)cos(22θ),
かつ 0<θ<π,
 sin(2θ) = 0 から θ=π/2,
 cos(22θ) = 0 から θ=π/44, 3π/44, 5π/44, ……, 43π/44,
 
327132人目の素数さん
2024/04/19(金) 18:33:27.43ID:NY+3Q0Fq
チンパン数学そんなに楽しいか?
328132人目の素数さん
2024/04/19(金) 18:34:19.05ID:5mt38Sq8
Mathematicaなら、下のような命令を10秒ほどでやってくれますよ

In[24]:= Table[Prime[n],{n,10^12,10^12+100}]
Out[24]= {29996224275833, 29996224275851, 29996224275883, 29996224275907, 29996224275917, 29996224275937,
> 29996224275973, 29996224276009, 29996224276019, 29996224276021, 29996224276091, 29996224276097,
> 29996224276153, 29996224276231, 29996224276309, 29996224276349, 29996224276409, 29996224276423,
> 29996224276519, 29996224276523, 29996224276549, 29996224276561, 29996224276567, 29996224276591,
> 29996224276633, 29996224276727, 29996224276771, 29996224276861, 29996224276883, 29996224276891,
> 29996224276937, 29996224276939, 29996224276957, 29996224276987, 29996224277027, 29996224277077,
> 29996224277113, 29996224277191, 29996224277209, 29996224277291, 29996224277293, 29996224277317,
> 29996224277329, 29996224277413, 29996224277441, 29996224277557, 29996224277563, 29996224277599,
> 29996224277627, 29996224277651, 29996224277653, 29996224277693, 29996224277699, 29996224277753,
> 29996224277777, 29996224277801, 29996224277807, 29996224277839, 29996224277977, 29996224278001,
> 29996224278029, 29996224278079, 29996224278091, 29996224278107, 29996224278109, 29996224278113,
> 29996224278121, 29996224278131, 29996224278133, 29996224278169, 29996224278179, 29996224278197,
> 29996224278211, 29996224278283, 29996224278409, 29996224278443, 29996224278457, 29996224278539,
> 29996224278551, 29996224278571, 29996224278611, 29996224278653, 29996224278689, 29996224278847,
> 29996224278857, 29996224278949, 29996224278967, 29996224279013, 29996224279019, 29996224279031,
> 29996224279037, 29996224279039, 29996224279081, 29996224279097, 29996224279139, 29996224279157,
> 29996224279249, 29996224279303, 29996224279309, 29996224279367, 29996224279379}
329132人目の素数さん
2024/04/19(金) 18:43:59.91ID:5mt38Sq8
おまけ
In[29]:= PrimePi[29996224275833]
Out[29]= 1000000000000

In[30]:= PrimePi[29996224279379]
Out[30]= 1000000000100

In[31]:= PrimePi[463]-PrimePi[100]
Out[31]= 65
330132人目の素数さん
2024/04/19(金) 19:04:13.89ID:SVQ+clD4
計算したんじゃなくて
データ保管庫にアクセスしただけだよ
331132人目の素数さん
2024/04/19(金) 21:09:14.34ID:NY+3Q0Fq
数学以前に日本語通じないアホばっかだな
332132人目の素数さん
2024/04/19(金) 22:17:09.36ID:uW4yUc1h
>>326
Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= solve[m_,n_] := (a=(m+n+1)/2;
Table[(2b-1)Pi/(m+n),{b,1,Floor[a]-Boole[IntegerQ[a]]}])

In[2]:= solve[20,24]

Pi 3 Pi 5 Pi 7 Pi 9 Pi Pi 13 Pi 15 Pi 17 Pi 19 Pi 21 Pi 23 Pi 25 Pi 27 Pi 29 Pi
Out[2]= {--, ----, ----, ----, ----, --, -----, -----, -----, -----, -----, -----, -----, -----, -----,
44 44 44 44 44 4 44 44 44 44 44 44 44 44 44

31 Pi 3 Pi 35 Pi 37 Pi 39 Pi 41 Pi 43 Pi
> -----, ----, -----, -----, -----, -----, -----}
44 4 44 44 44 44 44
333132人目の素数さん
2024/04/19(金) 22:42:39.80ID:VXmOPAjX
>>315
をお願いしまする
334132人目の素数さん
2024/04/20(土) 09:06:23.49ID:HVdq8JLd
Wolfram言語が話題になっているのに、日本語が通じないとかの罵倒しか書けないクズ人間が東大合格者だと思うひとはその旨をレスしてください。

週末の課題
Wolfram言語でPrimeやPrimeQを使用せずに n 以下の素数を列挙する関数を作れ。

解答例:
R言語での
prime = function(n){
pmax=floor(sqrt(n))
p=(1:pmax)[-outer(2:pmax,2:pmax)][-1]
p1=p[length(p)]+1
f=function(x) all(x%%p!=0)
c(p,(p1:n)[sapply(p1:n,f)])
}
実行すると
> prime(2024)
[1] 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53
[17] 59 61 67 71 73 79 83 89 97 101 103 107 109 113 127 131
[33] 137 139 149 151 157 163 167 173 179 181 191 193 197 199 211 223
[49] 227 229 233 239 241 251 257 263 269 271 277 281 283 293 307 311
...
[289] 1879 1889 1901 1907 1913 1931 1933 1949 1951 1973 1979 1987 1993 1997 1999 2003
[305] 2011 2017
このRのコードを
Wolfram言語に移植して


prime[n_] :=(
pmax=Floor[Sqrt[n]];
compo=Union[Flatten[Outer[Times,Range[2,pmax],Range[2,pmax]]]];
p=Drop[Complement[Range[pmax],compo],1];
p1=p[[-1]]+1;
f[x_] := !AnyTrue[p,Function[y,Divisible[x,y]]];
Join[p,Select[Range[p1,n],f]])

prime[2024]

Wolframが使える方の最適化・高速化を希望します。
335132人目の素数さん
2024/04/20(土) 10:51:03.61ID:tXPlmRjn
>>333
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

https://www.chart.co.jp/subject/sugaku/suken_tsushin/80/80-6.pdf
より引用
336132人目の素数さん
2024/04/20(土) 11:06:19.74ID:+SMyJsjZ
1/(1+tanx)の0からπ/4の定積分の求め方教えてください
337132人目の素数さん
2024/04/20(土) 11:10:30.94ID:tXPlmRjn
>>335
この定義に準拠すると

>>335
x(t) = 1/t
y(t) = t*sin(t)
だが
t→∞のとき x(t)^2+y(t)^2→∞を満たさない。
tが2πの倍数のときは x(t)^2+y(t)^2 = (1/t)^2 + 0
前提を満たさないから漸近線は存在しない。

東大合格者による追加説明や訂正を希望します。
338132人目の素数さん
2024/04/20(土) 11:52:25.86ID:NF26GESG
>>334
日本語もろくに使えないアホがwolframとか言ってるのが大変滑稽だという指摘なのにいちいち発狂w
339132人目の素数さん
2024/04/20(土) 12:23:03.18ID:tXPlmRjn
>>338
Phimose草の不等式が発動している。
東大合格者の文字列で発作が起こるらしい。

>336
u=tan(x)とおくとdu/dx=1/cos(x)^2

sin(x)^2+ cos(x)^2=1から
tan(x)^2 + 1 = 1/cos(x)^2 = du/dx
即ち、u^2+1=du/dx
∴dx=1/(u^2+1)*du

∫[0,π/4] 1/(1+tan(x)) dx
=∫[0,1] 1/((1+u)(u^2+1)) du
=(1/2)∫[0,1](1-u)/(u^2+1))du + (1/2)∫[0,1](1/(1+u)) du  ∵ 1/(1+u)(u^2+1) = ((1-u)/(u^2+1)) + 1/(1+u)))/2
=(1/2)∫[0,1] {1/(u^2+1) - u/(u^2+1) + 1/(1+u)} du
=(1/2) ( atan(1)-atan(0 ) - (1/2)∫[0,1]{(u/(u^2+1) + 1/(1+u)} du ∵ ∫1/(u^2+1)du = atan(u)
= (1/2)(π/4-0) - (1/2)∫{(u/(u^2+1) + 1/(1+u)} du
あとはs=u^2+1とおいて ds/du=2u ∴ du=((1/2u) ds
= π/8 - ∫[1,2] 1/s dx + ∫[0,1] 1/(1+u) du
= π/8 + log(2)/4
340132人目の素数さん
2024/04/20(土) 12:51:39.94ID:lHPBWyM5
東大合格者を否定されて発狂してるのはID:tXPlmRjn尿瓶ジジイだろww
相変わらず日本語通じてないね、チンパン言語?
341132人目の素数さん
2024/04/20(土) 12:59:04.50ID:+SMyJsjZ
部分分数分解することは思いつきませんでした。
ありがとうございます。
342132人目の素数さん
2024/04/20(土) 13:00:41.48ID:HVdq8JLd
Wolfram言語はRと同じくリストは1から始まるのでR userには馴染やすい。PythonやCは0から始まる。
Outer関数は引数の順序が変わるが仕様はほぼ同じだったが。
Rでの配列[-i]を実現するにはDropやDeleteではうまくいかず、Complementという関数を見つけて移植できた。

草で終わるという投稿が減ったのもPhimose草の不等式の起源が正しいことを示しているんだろう。
罵倒 > 助言 (Phimose草の不等式)
解説 : It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
343132人目の素数さん
2024/04/20(土) 13:02:58.16ID:HVdq8JLd
>>341
助言されたら、ちゃんとお礼が言える立派な高校生だな。
東大合格しますように。
344132人目の素数さん
2024/04/20(土) 13:43:25.71ID:lHPBWyM5
高校生なんて一言も名乗ってないみたいだけど相変わらず独りよがりの統失全開だねw
345132人目の素数さん
2024/04/20(土) 14:32:45.55ID:K224KWOY
>>334
エラトステネスのふるいをそのまま実装すれば次

n=2500;a=Table[i,{i,1,n}];k=1;a[[k]]=0;
While[k*k<=n,k++;While[a[[k]]==0,k++];For[i=2*k,i<=n,i+=k,a[[i]]=0];];
DeleteCases[a,0]
346132人目の素数さん
2024/04/20(土) 15:26:59.31ID:HVdq8JLd
>>344
東大合格者なら自分で解けるから、高校生だろうね。
列挙された素数の数すら数えられないようなのは東大不合格者決定。
347132人目の素数さん
2024/04/20(土) 16:00:23.53ID:+Ksmtq1i
>>335
なるほど!
原点からの距離が無限大にならないといけないのですね
348132人目の素数さん
2024/04/20(土) 16:03:13.96ID:E0eLVNUI
>>346
いくつあるかと列挙しろの違いも分からないチンパンが高校生に講釈垂れてんのかよ?
349132人目の素数さん
2024/04/20(土) 16:47:50.37ID:HVdq8JLd
短いだけが取り柄の素数列挙関数(メモリ消費が多大なのはコードが読めればすぐわかるw)

primes[n_] := Complement[Range[2,n],Flatten[Outer[Times,Range[2,n],Range[2,n]]]]

n<10000なら実用的な速度で出力された。
350132人目の素数さん
2024/04/20(土) 16:58:07.89ID:NF26GESG
>>349
短いって何?
アンタの老い先のこと?
351132人目の素数さん
2024/04/20(土) 16:59:16.22ID:HVdq8JLd
>>347
漸近線について深く考えたこともなかったので検索してみて勉強になりました。

昨日の内視鏡検査で小ポリープに遭遇したので
「看護婦さん(高齢者にはこの呼称の方が受けが
352132人目の素数さん
2024/04/20(土) 17:00:48.41ID:HVdq8JLd
>>350
素数の数どころか、プログラムコードの行数も数えられないらしいから、東大合格者でないのは明らかだな。
まあ、尿瓶チンパフェチのPhimoseくんは東大合格通知の書式すら知らなかったらから既知の事項だが。
353132人目の素数さん
2024/04/20(土) 17:06:06.85ID:NF26GESG
>>352
60過ぎても問題文の日本語すら読めないチンパンジジイそうムキになるなってw
354132人目の素数さん
2024/04/20(土) 17:39:22.88ID:LXHIw6lO
看護婦がどうとかジジイキモ🤮
355132人目の素数さん
2024/04/20(土) 19:34:08.55ID:qIDLaiOw
>>325 の補足

九点円(フォイエルバッハ円)は以下の9個の点を通る。
・3辺の中点
・3頂点から対辺に下ろした垂線の足
・垂心Hと3頂点の中点

ド・ロンシャン点Lは、外心O に関して 垂心H と対称な点。
356132人目の素数さん
2024/04/20(土) 20:03:24.71ID:qIDLaiOw
>>336
 1/(1+tan x) = (cos x)/(cos x + sin x)
  = {1 + (-sin x + cos x)/(cos x + sin x)}/2
  = {1 + (cos x + sin x) ' /(cos x + sin x)/2,
より
∫ 1/(1+tan x) dx = {x + log|cos x + sin x|}/2,

x - π/4 = y とおけば 分母は (√2)cos y ゆえ、
積分すべきは (1/2)(tan y) と定数になる。
357132人目の素数さん
2024/04/20(土) 20:13:07.70ID:Rr5rlhGm
今日の積分

∫[0,π/4] √(1+tanx) dx を求めよ。
358132人目の素数さん
2024/04/20(土) 20:32:38.56ID:HVdq8JLd
Rで数値積分

> integrate(\(x) sqrt(1+tan(x)),0,pi/4,rel.tol = 1e-12)$value
[1] 0.9384489
359132人目の素数さん
2024/04/20(土) 20:36:36.11ID:HVdq8JLd
夕食後の問題 (漸近線で話題になった関数 : (1/x)sin(1/x)の積分

∫[0,∞] (1/x)sin(1/x) dx を求めよ。
360132人目の素数さん
2024/04/20(土) 21:45:57.23ID:K224KWOY
>>349
2からnまでのリストを作り、そこから、合成数を取り除くという発想は面白い。だけど雑すぎる。
行列は、「○行△列目で値は□」等という情報を持つが、位置情報は必要無いし、値も一度計算してしまえば、忘れて言い。
つまり、行列を保存しておく必要は全くない。これを取り入れれば次になる。

n=2500;a=Range[2,n];Do[a=DeleteCases[a,i*j],{i,2,n},{j,2,n}];a

合成数の発生範囲を調節すると、次になる。

n=2500;a=Range[2,n];Do[a=DeleteCases[a,i*j],{i,2,Sqrt[n]},{j,i,n/i}];a

この方法では、iは、4,6,8,9,10,12,...など、無駄な値も走る。
この無駄をなくしたのがエラトステネスのふるいに相当。
361132人目の素数さん
2024/04/20(土) 21:52:07.48ID:bVNPGaYh
合成数?

そんなのsuperPCM関数を使えば
簡単に取り除ける


◆superPCM関数
Table[Product[(2n-1)^(C(0,3-a))
C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}]
362132人目の素数さん
2024/04/20(土) 21:58:09.49ID:bVNPGaYh
よくある素数判定の
floorもsqrt(n)も使わずに
素数判定ができる優れもの

数十~数億の乗積計算をかいくぐって
なお、生き残ったものが素数
363132人目の素数さん
2024/04/20(土) 21:59:57.13ID:bVNPGaYh
自分で作って
思った以上に精度が高くてビックリ
364132人目の素数さん
2024/04/21(日) 06:52:56.61ID:0si37W7j
>>360
レスありがとうございます。
DeleteCasesの使い方など勉強になります。
そのコマンドの存在すら知らなかった(^_^;)

Rでの(1:n)[-outer(2:n,2:n)][-1]の移植でした。
R言語だと配列[-n]でインデックスがnを除いた配列(nは配列でも行列でも可)を返すのですので便利。
Wolfram言語での同等の機能を検索しながらコーディングしています。
365132人目の素数さん
2024/04/21(日) 07:16:05.80ID:0si37W7j
朝飯前の問題

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
のデータを使って
(1)月~土の最低気温の標準偏差を求めよ。
(2)月曜日の最低気温が14℃のときの日曜日の最低気温を区間推定せよ。
 (2)の計算に必要な条件は適宜補ってよい。
366132人目の素数さん
2024/04/21(日) 07:38:15.54ID:PAZMPttm
どう見ても自演w
367132人目の素数さん
2024/04/21(日) 07:47:19.43ID:4fZB8HoF
この完全なる自演はなんか意味あんの?
単なる誤操作?
368132人目の素数さん
2024/04/21(日) 08:04:51.96ID:wynU7K62
n 日間の最低気温の平均値はm℃であった。
n 個のデータのうちa 個の記録が消失した。
前日との温度差のデータはn-1個は保持されている.
温度差のデータ数列をdとする。
失われたa 個のデータの平均値を計算せよ。
Σ記号など必要な表記法を用いてよい。
369132人目の素数さん
2024/04/21(日) 08:24:32.14ID:85p+UetF
>>357
∫[0,π/4] √(1+tanx) dx (置換t=√(1+tanx))
= 2∫[1,√2] t^2/(1+(t^2-1)^2) dt
= 2∫[1,√2] t^2/{(t^2+√(2+2√2)t+√2)(t^2-√(2+2√2)t+√2)} dt
= 1/√(2+2√2)∫[1,√2] {-t/(t^2+√(2+2√2)t+√2) + t/(t^2-√(2+2√2)t+√2)} dt
= 1/√(2+2√2){(1+√2)arctan(1+√2+√(2+2√2)t)-(1/2)log|t^2+√(2+2√2)t+√2| - (1+√2)arctan(1+√2-√(2+2√2)t)+(1/2)log|t^2-√(2+2√2)t+√2|}_(t=1,√2)
= (1+√2)/√(2+2√2){-arctan(1+√2+√(2+2√2))+arctan(1+√2-√(2+2√2))+arctan(1+√2+2√(1+√2))-arctan(1+√2-2√(1+√2))}
= (1/2)√(2+2√2)arctan((2/7)√(2+10√2))
= √(2+2√2)arcsin(-1+√2)
370132人目の素数さん
2024/04/21(日) 09:17:09.17ID:M+TCMJFP
■合成数はどうやって取り除く?

奇数の数列1,3,5,7,9,11,13,15,17,19…
に対して

数列1,1,0,1,1,0,1,1,0,1,1,0…は
a_n=n^2 mod3

数列1,1,1,1,0,1,1,1,1,0,1,1,1,1,0…は
a_n=n^4 mod5

これを繰り返してゆくと、

Table[(C(0,n-1))+{(2n-1)
{C(0,n-2)+((n+1)^2mod3)}
{C(0,n-3)+((n-3)^4mod5)}
{C(0,n-4)+((n-4)^6mod7)}
{C(0,n-6)+((n-6)^10mod11)}
{C(0,n-7)+((n-7)^12mod13)}
{C(0,n-9)+((n-9)^16mod17)}},{n,1,180}]

{n,1,180}の範囲で精度100%が得られる

+((n-5)^8mod9)と
+((n-8)^14mod15)が抜けているが
これらは1と0以外を出力するので、
0とのコンビネーションを二回かけて
1と0 だけにする
さらに、
modの前後の数値を変数aとnで
置き換えると

Table[Product[(2n-1)^(C(0,3-a))
C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}]

変数aとnを使うと乗積の計算が入るので
概ね100より大きな素数の判定となる
371132人目の素数さん
2024/04/21(日) 09:19:00.78ID:M+TCMJFP
エラトステネスの篩の数式化に
成功したのは我が輩だけ
372132人目の素数さん
2024/04/21(日) 09:41:24.50ID:4fZB8HoF
素数の周りにはゴミクズがたかってくるな
373132人目の素数さん
2024/04/21(日) 10:22:45.73ID:1KRtVg1F
S[k,n] = Σ[j=k,n] 1/j^2とする。
以下の極限の収束・発散を判定せよ。

lim[n→∞] Σ[k=1,n] S[k,n]
374132人目の素数さん
2024/04/21(日) 10:29:22.40ID:1IC+MKcH
関数の連続性は関数の定義域内でしか考えません
y=1/x は(定義域内で)連続ということになります
物理的には x=0 で不連続なのに何か気持ち悪いです
375132人目の素数さん
2024/04/21(日) 11:02:39.64ID:eV8xURyu
半径3000の円弧400を斜めに切った場合、斜め500の部分の半径って出るんでしょうか

数字適当ですけどこの手摺の感じです高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
376132人目の素数さん
2024/04/21(日) 11:31:43.97ID:KNrj0Rg+
やはり、具体的な数字があった方がイメージが湧きやすい

30 日間の最低気温の平均値は10℃であった。
30 個のデータのうち5 個の記録が消失した。
前日との温度差のデータは29個は保持されている.
前日との温度差のデータは
-2 1 0 4 1 -3 4 -1 2 4 0 -3 -4 -5 -5 0 5 -4 2 4 -4 3 5 2 -4 2 -1 -3 -5
である
どのデータが失われるかはランダムに決定されるとして失われた5個のデータの平均値を区間推定せよ。
377132人目の素数さん
2024/04/21(日) 11:44:09.84ID:KNrj0Rg+
>>360
Do[a=DeleteCases[a,i*j],{i,2,Floor[Sqrt[n]]},{j,i,Floor[n/i]}] ; a
でなくて
Do[a=DeleteCases[a,i*j],{i,Pi,Sqrt[n]},{j,i,n/i}] ; a
でも動作するのは驚き。
整数必須と思っていた。

何事にも先達はあらまほしきことなり
378132人目の素数さん
2024/04/21(日) 11:45:51.81ID:34PQz0TW
 S(k,n) = Σ[j=k,n] s(j),
とおくと
 Σ[k=1,n] S(k,n) = Σ[k=1,n] Σ[j=k,n] s(j)
  = Σ[j=1,n] (Σ[k=1,j] 1) s(j)
  = Σ[j=1,n] j・s(j),
本問では
 Σ[k=1,n] S(k,n) = Σ[j=1,n] 1/j
  > Σ[j=1,n] ∫[j,j+1] 1/x dx
  = ∫[1,n+1] 1/x dx
  = log(n+1)
  → ∞     (n→∞)
379132人目の素数さん
2024/04/21(日) 11:52:06.08ID:KNrj0Rg+
>>315
応用問題
y = (1/x) sin(1/x) においてx軸は漸近線ですか?
380132人目の素数さん
2024/04/21(日) 12:00:35.67ID:1IC+MKcH
>>379
応用も何も明らかに漸近線だろ
381132人目の素数さん
2024/04/21(日) 12:29:28.78ID:34PQz0TW
 |y| ≦ 1/|x|     (x≠0)
任意の ε>0 に対し
 |x| > 1/ε ⇒ |y| < ε,
382132人目の素数さん
2024/04/21(日) 14:30:39.99ID:KWsC+eu/
>>380
そいつ日本語通じないから突っ込むだけ無駄だよ
383132人目の素数さん
2024/04/21(日) 17:01:55.91ID:34PQz0TW
類似問題
 S(k,n) = Σ[j=k,n] 1/j^2.0001 とする。
以下の極限の収束・発散を判定せよ。

lim[n→∞] Σ[k=1,n] S(k,n)
384132人目の素数さん
2024/04/21(日) 17:28:15.92ID:KWsC+eu/
>>365
尿瓶ジジイ自演がバレて逃走w
385132人目の素数さん
2024/04/21(日) 18:25:00.29ID:KNrj0Rg+
>>376
これをWolframで計算させようと思ったのだが、組み合わせを列挙する関数、Rのcombnに相当する方法がみつからなかった。
RLink`を使ってRのcombnを呼び出して使用。

n=30
m=10
a=5

d={-2,1,0,4,1,-3,4,-1,2,4,0,-3,-4,-5,-5,0,5,-4,2,4,-4,3,5,2,-4,2,-1,-3,-5};
da=Accumulate[d];
t1=m - Total[da]/n;
ts=Prepend[da+t1,t1]
Needs["RLink`"]
InstallR[]
combn = REvaluate["combn"];
y=combn[n,a]; (* y=REvaluate["combn(30,5)"] ; *)
nc=Length[y[[1]]]; (* number of comibination *)
re=Mean[Table[ts[[y[[i]][[j]]]],{i,a},{j,nc}]];
Mean[re]
Quantile[re,{0.025,0.5,0.975}]

計算結果

In[25]:= Mean[re]

Out[25]= 10

In[26]:= Quantile[re,{0.025,0.5,0.975}]

32/5 10 68/5

Wolfram言語の使える方の検証希望。
386132人目の素数さん
2024/04/21(日) 18:33:42.80ID:KNrj0Rg+
Wolfram言語の使える方のレスがついたら、Phimoseくんは悔しいらしくて自演認定。
そうでもしなければ精神が崩壊するのかねぇ?

医師板まで出かけていって罵倒投稿しているPhimoseくんが東大合格者だと思う人はその旨とその根拠を投稿してください。

さて、Wolframでの結果をシミュレーションで検証したいのだが
30個から重複なしで無作為に選ぶ方法がみあたらない。
Table[RangeInteger[30],5]だと乱数発生に重複を許すことになる。
Rだとsample(30,5,replace=FALSE)でいいんだが。
sample = REvaluate["sample"]だとRでやっているみたいなものだし。

Wolframの使える方の御助言を期待します。
387132人目の素数さん
2024/04/21(日) 18:38:12.90ID:KNrj0Rg+
>>380
漸近線は該当の曲線と交わってもいいというのはコンセンサスが得られているのだろうか?
近づくけど交点をもたないのが漸近線だと思っていた。
388132人目の素数さん
2024/04/21(日) 19:40:59.40ID:34PQz0TW
温度データは
{9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4}
かな? ソートすると

度数分布
------
1, 0,
2, 2,
3, 1,
4, 1,
5, 2,
6, 0,
7, 3,
8, 3,
9, 3,
10, 1,
11, 1,
12, 3,
13, 4,
14, 1,
15, 2,
16, 1,
19, 2,
20, 0,
------
389132人目の素数さん
2024/04/21(日) 19:56:01.81ID:KNrj0Rg+
>>386
自己解決

発生させた乱数に重複があれば重複がなくなるまで繰り返すという仕様でsample関数を作成してWolframで100万回シミュレーション

sample[n_:30,a_:5] := (b=Table[RandomInteger[{1,n}],a];While[Length[Union[b]]<a,b=Table[RandomInteger[{1,n}],a]];b)ts={9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4}
sim[] := (i=sample[30,5] ; Mean[ts[[i]]])
re=Table[sim[],1*^6];
Mean[re]
Quantile[re,{0.025,0.5,0.975}]

結果
In[22]:= Mean[re]

50002439
Out[22]= --------
5000000

In[23]:= Quantile[re,{0.025,0.5,0.975}]

32 68
Out[23]= {--, 10, --}
5 5

総当たりでの結果とほぼ合致。
390132人目の素数さん
2024/04/21(日) 20:00:17.32ID:KNrj0Rg+
>>388
その通りです。

> sort(ts)
[1] 2 2 3 4 5 5 7 7 7 8 8 8 9 9 9 10 11 12 12 12 13 13 13 13 14 15 15 16 19 19
> table(ts)
ts
2 3 4 5 7 8 9 10 11 12 13 14 15 16 19
2 1 1 2 3 3 3 1 1 3 4 1 2 1 2

おまけ(Rのコード)


n=30
m=10
a=5
d=c(-2,1,0,4,1,-3,4,-1,2,4,0,-3,-4,-5,-5,0,5,-4,2,4,-4,3,5,2,-4,2,-1,-3,-5)
# nt1+ sum(cumsum(d)) == nm
t1 = m - sum(cumsum(d))/n
ts=c(t1,t1+cumsum(d)) ; ts
391132人目の素数さん
2024/04/21(日) 20:04:33.58ID:Ke1gC4/x
△ABCにおいて、ABの中点をMとする。
BC上を点Pが、CA上を点Qが動くとき、△MPQの周の長さをLとする。
Lの最小値と(AB+BC+CA)/2の大小を比較せよ。
392132人目の素数さん
2024/04/21(日) 21:15:04.45ID:KNrj0Rg+
>>391
R言語で三角形の形状を乱数発生させて作図
N=(AB+BC+CA)/2
Lmin:Lの最小値
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

10万回の測定では Lmin < (AB+BC+CA)/2

> y=t(replicate(1e5,calc()))
> all(apply(y,1,diff)>0)
[1] TRUE

実験による推定なので
東大卒業生による検証を希望します。
393132人目の素数さん
2024/04/21(日) 21:15:19.13ID:MUhMynOs
>>387
漸近線は限りなく近づく直線だと思う事にする

lim[x→∞] (1/x) sin(1/x)=0

において関数値は限りなく0に近づいているがこの関数値は∞回0という値を取ってる

これと同じ感覚で良いんでないの?
394132人目の素数さん
2024/04/21(日) 21:20:36.76ID:KNrj0Rg+
>>386補足
Table[RangeInteger[30],5]だと0から30まで31個から5個になるので
RangeInteger[{1,30},5]とすべき。重複を回避するオプションはないみたい。
395132人目の素数さん
2024/04/21(日) 21:33:29.86ID:OUMWDvM6
>>393
お近づきになってもいいけど一線を越えるのはいかがなものかと。
>351の教訓w
396132人目の素数さん
2024/04/21(日) 21:47:22.88ID:KWsC+eu/
尿瓶ジジイ、下手な自演がバレて発狂w
397132人目の素数さん
2024/04/21(日) 21:48:42.34ID:KWsC+eu/
尿瓶ジジイが自演していないと思う人レスしてください
398132人目の素数さん
2024/04/21(日) 22:03:22.04ID:eMVPO2+7
今日の積分

∫[0,1] log(x^2+1) dx
399132人目の素数さん
2024/04/21(日) 23:52:54.00ID:85p+UetF
>>398
与式 = ∫[0,1] x' log(x^2+1) dx
= log(2) - ∫[0,1] 2x^2/(x^2+1) dx
= log(2) - ∫[0,1]{2-2/(x^2+1)}dx
= log(2) - 2 + π/2
400132人目の素数さん
2024/04/22(月) 04:59:21.72ID:5qZe7l8z
>>394
自己解決
RandomSample[Range[30],5]がsample(30,5)に相当
401132人目の素数さん
2024/04/22(月) 07:38:05.38ID:5qZe7l8z
>>385
これもstackoverflowのQ&Aをみつけて自己解決

a=5
ts={9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4}
y=Subsets[ts,{a}];
re=Table[Mean[y[[i]]],{i,1,Length@y}];
Mean[re]
Quantile[re,{.025,.5,.975}]
402132人目の素数さん
2024/04/22(月) 08:43:42.58ID:aSsf4f76
>>365
Wolfram言語の練習に
ブートストラップ法で区間推定

ts={14 ,19 ,17 ,13, 20 ,19}
k=1*^5
re=Table[Mean[RandomChoice[ts,Length@ts]],k]
Mean[re]
Quantile[re,{0.025,0.5,0.975}]
403132人目の素数さん
2024/04/22(月) 09:20:00.09ID:VHMw4BHx
ゴミは肝心要の統計がわからんから違う言語を使っても違う言語で同じアホレス繰り返すwwwwwwwwwwa
404132人目の素数さん
2024/04/22(月) 11:51:49.20ID:aSsf4f76
RandomSampleをRandomChoiceに替えたらbootstrapができた。
indexでRandomIntegerしなくてすんだ。
Rのcombnの相当関数はSelectsだった。
combinationとかenumerationとかで検察したのでみつけられなかった。stackoverflowで検索するのが早道だな。
405132人目の素数さん
2024/04/22(月) 11:54:58.13ID:aSsf4f76
>386は図星のようだ。

またまた、
罵倒 > 助言 の Phimose草の不等式が実証されてますなぁ
解説
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.
406132人目の素数さん
2024/04/22(月) 12:32:14.49ID:6ORmhlLT
>>383
 s(j) = 1/j^2.0001
Σ[k=1,n] S(k,n) = Σ[j=1,n] j・s(j)
 = Σ[j=1, n] 1/j^1.0001
 < 1 + Σ[j=2, n] ∫[j-1/2,j+1/2] 1/x^1.0001 dx
 = 1 + ∫[3/2, n+1/2] 1/x^1.0001 dx
 = 1 + [-10000/x^0.0001 ](x:3/2→n+1/2)
 = 1 + 10000{(2/3)^0.0001 - 1/(n+1/2)^0.0001}
 < 1 + 10000・(2/3)^0.0001
 = 10000.59454311188

極限値
  10000 + γ = 10000.5772156649…
407132人目の素数さん
2024/04/22(月) 12:51:20.62ID:CjcsDYOy
今日の積分

∫[0,1] {√(1+t^2)}/t dt

(東大理系2013)
408132人目の素数さん
2024/04/22(月) 14:17:36.46ID:5FMlnt/L
>>388
温度の期待値の区間をBootstrap法で推定。
Wolfram言語の練習

In[11]:= ts={9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4};

In[12]:= k=1*^5;

In[13]:= re=Table[Mean[RandomChoice[ts,Length@ts]],k];

In[14]:= Mean[re] // N

Out[14]= 10.002

In[15]:= Quantile[re,{0.025,0.975}] // N

Out[15]= {8.4, 11.6333}
409132人目の素数さん
2024/04/22(月) 14:50:43.08ID:5FMlnt/L
>>408
正規分布を使うとIn[1]:= ts={9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4};
In[2]:= Quantile[NormalDistribution[Mean[ts], StandardDeviation[ts]], {0.025,0.975}]
Out[2]= {0.952193, 19.0478}
区間の幅が広すぎ
410132人目の素数さん
2024/04/22(月) 15:36:38.70ID:7c4sPJ42
「ブートストストラップなら普通の区間検定より区間狭くなって優秀なんですよ」
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
411132人目の素数さん
2024/04/22(月) 15:43:31.18ID:qHll8Bu7
ダウンロード&関連動画>>

412132人目の素数さん
2024/04/22(月) 16:46:28.75ID:wxnaTEMs
今日の積分

∫[1,a] {√(1+t^2)}/t dt
ただしa>1

(東大理系2013)
413132人目の素数さん
2024/04/22(月) 16:53:28.97ID:gzdEb9v/
■superPCM関数とは?

奇数の数列2n-1から
合成数を取り除くアルゴリズム

PCM(Product Combination Mod)

によって素数を1
合成数を0に振り分ける(量子化)

これはアナログをデジタルに変換する
PCM(Pulse Coded Modulation)と
同じ発想

奇数の数列2n-1は乗積Πを掛けると
その都度出力されてしまうので、
C(0,3-a)を使って一度だけ出力する

Table[Product[(2n-1)^(C(0,3-a))
C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}]


◆aの範囲{a,3,30}

3は固定値、
終値の30は最大50まで設定できる
これはnの初期値
しかし、aの終値は40や50に設定しても
30の時と精度に差は生じない
414132人目の素数さん
2024/04/22(月) 17:04:47.51ID:uE/ElGrc
>>403
チンパンだから日本語やっぱり通じないみたいw
415132人目の素数さん
2024/04/22(月) 17:25:30.55ID:6ORmhlLT
>>412
 √(1+tt) /t = t/√(1+tt) + 1/{t√(1+tt)},
第一項は
 ∫ t/√(1+tt) dt = √(1+tt),

 u = √(1+tt) とおくと
 du = {t/√(1+tt)}dt,
より 第二項は
∫ 1/(t√(1+tt)) dt = ∫ (1/tt) {t/√(1+tt)}dt
 = ∫ 1/(uu-1) du
 = (1/2)∫ {1/(u-1)-1/(u+1)}du
 = (1/2)log(u-1) - (1/2)log(u+1)
 = (1/2)log(√(1+tt) -1) - (1/2)log(√(1+tt) +1),

(与式) = √(1+tt) + (1/2)log(√(1+tt)-1) - (1/2)log(√(1+tt)+1),
416132人目の素数さん
2024/04/22(月) 17:33:03.98ID:pH+3RKg1
^^^累乗が無意味だと気づかない馬鹿
417132人目の素数さん
2024/04/22(月) 17:34:57.00ID:6ORmhlLT
>>412
(与式) = √(1+aa) + (1/2)log(√(1+aa)-1) - (1/2)log(√(1+aa)+1)
    - √2 + log(1+√2),
418132人目の素数さん
2024/04/22(月) 18:34:04.54ID:GQY5t3Jx
>>410
違うよ。
標本数が少なくて正規分布が仮定できないときの有力な手段。
ゾフルーザの治験でも信頼区間算定に使われていた。
419132人目の素数さん
2024/04/22(月) 18:35:00.18ID:GQY5t3Jx
Wolfram言語になれるためのコーディング

(* △ABCの面積 *)
ABC2S[A1_,B1_,C1_] := (1/2)*Abs[ Im[(A1-C1)*Conjugate[(B1-C1)] ] ]
ABC2S[1,2,3+4I]
ABC2S[2,3,4+5I]

(* 三角形の内心と内接円半径 *)
incircle[A1_,B1_,C1_] := (
ABC2S[P_,Q_,R_] := (1/2)*Abs[Im[(P-R)*Conjugate[(Q-R)]]];
a=Abs[B1-C1];b=Abs[C1-A1];c=Abs[A1-B1];
s=(a+b+c)/2;S=ABC2S[A1,B1,C1];
radius=S/s; center=(a*A1+b*B1+c*C1)/(2s);
{center,radius})
incircle[1,2,3+4I] // N
incircle[2,3,4+5I] // N

(* 三角形の外心と外接円半径 *)
outcircle[P_,Q_,R_]:=(
dot[x_,y_]:=Re[x]*Re[y]+Im[x]*Im[y];
p=Abs[Q-R];q=Abs[R-P];r=Abs[P-Q];
cosP=dot[R-P,Q-P]/(q*r);cosQ=dot[P-Q,R-Q]/(r*p);cosR=dot[Q-R,P-R]/(p*q);
center=(p*cosP*P+q*cosQ*Q+r*cosR*R)/(p*cosP+q*cosQ+r*cosR);
radius=Abs[center-P];
{center,radius}
)
outcircle[1,2,3+4I] // N
outcircle[2,3,4+5I] // N

(* 三角形の垂心 *)
orthocenter[P_,Q_,R_] :=(
a1=Re[P] ; a2=Im[P];
b1=Re[Q] ; b2=Im[Q];
c1=Re[R] ; c2=Im[R];
o1=(a1*(a2*(b1-c1)-b1*b2+c1*c2)+(b2-c2)*(a2^2-a2*(b2+c2)+b1*c1+b2*c2))/(a1*(c2-b2)+a2*(b1-c1)-b1*c2+b2*c1);
o2=(a1^2*(b1-c1)+a1*(a2*b2-a2*c2-b1^2+c1^2)+a2*(c1*c2-b1*b2)+(b1-c1)*(b1*c1+b2*c2))/(a1*(b2-c2)+a2*(c1-b1)+b1*c2-b2*c1);
o1+o2*I
)
orthocenter[1,2,3+4I] // N
orthocenter[2,3,4+5I] // N
420132人目の素数さん
2024/04/22(月) 18:42:30.99ID:VHMw4BHx
>>418
へぇ違うのw
じゃあとりあえず上限11.633だっけww
それよりでかい値で帰無仮説立てて棄却してみろやwwww
アホ~wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
421132人目の素数さん
2024/04/22(月) 20:28:51.74ID:gzdEb9v/
>>411
数字をピッタリ合わせる能力
422132人目の素数さん
2024/04/22(月) 20:45:54.26ID:Wmgavgrm
>>420
帰無仮説たててp値で判定は既に時代遅れ。
423132人目の素数さん
2024/04/22(月) 21:25:15.11ID:U2iGu9cs
>>413
うちの環境では走らないな。

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= Table[Product[(2n-1)^(C(0,3-a))
C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}],{n,50,232}]

Syntax::sntxf: "Table[Product[(2n-1)^(C(0" cannot be followed by ",3-a))".

In[1]:=
424132人目の素数さん
2024/04/22(月) 21:39:54.76ID:7c4sPJ42
>>422
へぇーwwwwwwww
仮説検定が時代遅れwwwwwwwwww
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
425132人目の素数さん
2024/04/22(月) 23:09:30.30ID:gzdEb9v/
>>423
計算知能サイトのフォームに
入力するだけ
426132人目の素数さん
2024/04/22(月) 23:23:52.34ID:7c4sPJ42
おれも

Syntax::sntxf: "Product[" cannot be followed by "(2n-1)^(C(0,3-a))C(0,C(0,((n-a)^(2a-2)mod(2a-1)))),{a,3,30}]".
427132人目の素数さん
2024/04/22(月) 23:25:34.09ID:zxprsYqE
>>424
時代遅れではあるね
428132人目の素数さん
2024/04/22(月) 23:33:21.73ID:gzdEb9v/
>>426
計算知能サイトの入力フォームに
入力して、右の=ボタン押すだけ
429132人目の素数さん
2024/04/22(月) 23:37:21.22ID:nKO2oSRb
宝くじは極めて公正だった
430132人目の素数さん
2024/04/22(月) 23:48:28.98ID:nKO2oSRb
ユニット自体もシャッフルされていたとは…
431132人目の素数さん
2024/04/23(火) 00:48:50.80ID:nfeXM0n/
>>424
じゃあ統計検定でも大学入試も時代遅れやなwwww
仮説検定はわからないけど区間検定はできるてかwwwwwwwwwwwwwwwwwwwwww
432132人目の素数さん
2024/04/23(火) 02:04:58.67ID:Ep53ozuL
与えられた長方形の一辺の中点を定規だけで作図するには
どうすればいいでしょうか。
433132人目の素数さん
2024/04/23(火) 02:33:50.33ID:KwPGo5Do
瀕死の統計学を救え!: 有意性検定から「仮説が正しい確率」へ
豊田秀樹
朝倉書店, 2020 -

米国統計学会をはじめ科学界で有意性検定の放棄が謳われるいま,統計的結論はいかに語られるべきか?初学者歓迎の軽妙な議論を通じて有意性検定の考え方とp値の問題点を解説,「仮説が正しい確率」に基づく明快な結論の示し方を提示。
434132人目の素数さん
2024/04/23(火) 03:46:51.62ID:7Ack2Qhi
>>432
手順
(1) 長方形の対角線2本を曳く。
(2) 対角線の平行線を1本曳く。
(3) できた台形の対角線の交点と長方形の頂点を結ぶ。
  この線によって長方形の対辺が1:2に内分される。
  長方形が2つの長方形に分割される。
(4) それらの対角線の交点どうしを結べば、
  長方形の辺の中点をとおる。
435132人目の素数さん
2024/04/23(火) 04:20:51.17ID:7Ack2Qhi
>>434
長方形を ABCD とする。
(1) 対角線AC,BDの交点をX。とする。
  長方形の周上の点P と X。を結んだ半直線が再び長方形と交わる点
  をP~とする。
(2) AX。上に点E、BX。上に点Fをとる。
  EF と 辺BC の交点をG,
  E~F と辺ABの交点をH とすると、
  GH // AC
(3) GH と対角線BD の交点をIとおく。
  CGIX。は台形で、その対角線の交点をXi とおく。
  BCを横軸、BAを縦軸とする。
  直線BXi の傾きは BDの傾きの 1/3 だから
  辺CD の下から1/3の点Jで交わる。
  CJ = CD/3.
  同様にして、辺ABの下から1/3の点Kをとる。
  2つの長方形 AKJD と KBCJ に分割される。
(4) それらの対角線の交点どうしを結んだ直線は AB,CDに平行で、
  辺AD,BCの中点を通る。
436132人目の素数さん
2024/04/23(火) 06:47:11.16ID:KwPGo5Do
Phimoseくんは俺の意見に賛同するレスを自演認定する予感。
437132人目の素数さん
2024/04/23(火) 06:52:14.05ID:KwPGo5Do
朝の問題

次の各命題が恒真命題であるか否かを答えよ。

(1) 罵倒厨ならば(自演認定厨ならば罵倒厨である)。
(2) (罵倒厨でないならば 罵倒厨である)ならば 自演認定厨である。
438132人目の素数さん
2024/04/23(火) 07:10:27.33ID:HHymem2a
>>408
ブートストラップ標本に中央値を使って計算してみた。

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= ts={14 ,19 ,17 ,13, 20 ,19}

Out[1]= {14, 19, 17, 13, 20, 19}

In[2]:= k=1*^5;

In[3]:= re=Table[Median[RandomChoice[ts,Length@ts]],k];

In[4]:= Median[re]

Out[4]= 18

In[5]:= Quantile[re,{0.025,0.975}] // N

Out[5]= {13.5, 19.5}

MeanをMedianに変更するだけですんだ。
439132人目の素数さん
2024/04/23(火) 07:27:57.22ID:W0wgiYhn
>>436
どうせ図星なんだろ?
440132人目の素数さん
2024/04/23(火) 07:40:29.46ID:mBdwwsnl
>>409
t分布でやってみる。

In[1]:= ts={9,7,8,8,12,13,10,14,13,15,19,19,16,12,7,2,2,7,3,5,9,5,8,13,15,11,13,12,9,4};
In[2]:= Quantile[StudentTDistribution[Mean[ts], StandardDeviation[ts],Length@ts-1], {0.025,0.975}]

Out[2]= {0.55858, 19.4414}

WolframにはT分布で95%CIを計算する関数が用意されていた。
In[3]:= Needs["HypothesisTesting`"]

In[4]:= StudentTCI[Mean[ts], StandardDeviation[ts],Length@ts-1] // N

Out[4]= {0.55858, 19.4414}
441132人目の素数さん
2024/04/23(火) 07:53:37.35ID:nfeXM0n/
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
https://ja.wolframalpha.com/input?i=%E6%AF%8D%E5%B9%B3%E5%9D%87%E3%81%AE%E4%BF%A1%E9%A0%BC%E5%8C%BA%E9%96%93&assumption=%7B%22F%22%2C+%22ZInterval%22%2C+%22c%22%7D+-%3E%2295+%25%22&assumption=%7B%22F%22%2C+%22ZInterval%22%2C+%22n%22%7D+-%3E%225%22&assumption=%7B%22F%22%2C+%22ZInterval%22%2C+%22xbar%22%7D+-%3E%2217%22&assumption=%7B%22F%22%2C+%22ZInterval%22%2C+%22sigma%22%7D+-%3E%222.898%22
442132人目の素数さん
2024/04/23(火) 08:21:56.53ID:HHymem2a
自演認定でもしなければ精神が崩壊するのかねぇ?

Phimoseくんが草を多用していたのは下記の理由。
It is as if Mr. Phimose loves to use the expression of 'kusa' that fondles his foreskin too much which has made his hands stink.

www多用の理由を考える問題 

 Phimoseくんのw多用はPhimoseくんのforeskinの形状に由来する を帰無仮説として時代遅れの有意差検定をせよ。
443132人目の素数さん
2024/04/23(火) 08:24:19.14ID:HHymem2a
>>433
最近は、医学論文でもリスク比が1を跨ぐかで論じてp値には言及していないのが増えたと思う。
444132人目の素数さん
2024/04/23(火) 08:32:09.95ID:nfeXM0n/
>>443
へぇ~じゃあ統計検定でいまでも仮設検定が出題されてるのは時代遅れでも出し続けてるんですねぇwww いけませんねぇwwwwww
区間推定もいけませんねぇ?あれ仮設検定毎回するのを回避するための方法ですからねぇ?最新の?p値を使わない検定?に差し替えていかないといけませんねぇ?
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
445132人目の素数さん
2024/04/23(火) 08:40:49.34ID:W0wgiYhn
>>442
相変わらず気に食わないレスは全員同じに見える病気かよ
アンタはここで発狂してないと精神崩壊するんだろ?
446132人目の素数さん
2024/04/23(火) 09:31:37.16ID:mBdwwsnl
>>435
>E~F と辺ABの交点をH とすると
直線EFと辺AB(線分)の交点がないのですが?
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
447132人目の素数さん
2024/04/23(火) 09:39:57.66ID:xN9JilJB
今日の積分

∫[1,4] √{1+√(1+x)} dx
448435
2024/04/23(火) 11:11:56.56ID:7Ack2Qhi
>>446
E~ は 点X。に関してEと対称な点でした。スマン

作図方法は
EF, BC → G
EF, AD → L
GX。, AD → G~
LX。, BC → L~
G~L~, CX。→ E~
E~F, AB → H
449132人目の素数さん
2024/04/23(火) 13:21:14.39ID:7Ack2Qhi
>>447

 1 + √(1+x) = u,
とおくと
 x = (u-1)^2 - 1,
 dx = 2(u-1)du,
より
 ∫ √{1+√(1+x)} dx
 = ∫ √u・2(u-1)du
 = (4/5)u^{5/2} - (4/3)u^{3/2}
 = (4/15)(3u-5)u^{3/2},

積分の範囲: 1+√2 ≦ u < 1+√5,
 (与式) = (4/15){(13+√5)√(1+√5)-(4+√2)√(1+√2)}
    = 5.0655498446
450132人目の素数さん
2024/04/23(火) 14:06:42.80ID:mBdwwsnl
>>448
定規だけでというルールが理解できていないのかもしれませんが、
対称な点というのは定規だけで描けるのでしょうか?

作図してみたら
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
>辺CD の下から1/3の点Jで交わる。
は成立しましたが、
>直線BXi の傾きは BDの傾きの 1/3
はダウトです。
451132人目の素数さん
2024/04/23(火) 14:32:21.33ID:mBdwwsnl
>>450
E~(図ではE_で表示)は求められるものとして続きの手順に従って
作図しました。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

長い詰将棋のような力作に感服しました。
452132人目の素数さん
2024/04/23(火) 15:30:33.81ID:3TQhzN7m
一辺の長さが1の正方形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるようなA,B,Cの位置を求めよ。
453448
2024/04/23(火) 15:38:27.85ID:7Ack2Qhi
>>450
 GX。,CI → Xi
としました。
 GI // CX。
から 三角相等で
 △GIXi ≡ △X。CXi
∴ BXi は GIの中点、CX。の中点を通ります。
∴ BXi の傾きは BDの傾きの 1/3 だから
  辺CD の下から1/3の点Jで交わる。 (この2つは同値ですね)
454448
2024/04/23(火) 15:56:49.00ID:7Ack2Qhi
>>453 の補足
 CX。の中点をMとすれば
 (BMの傾き) = (CD/4)/(3BC/4) = (1/3)(CD/BC) = (1/3)(BDの傾き)

>>450
長方形の周上あるいは対角線上の点ならば簡単ですね。その他は、、、

本問は、対角線の平行線が描ければ、あとは何とかなりますって (?)
455448
2024/04/23(火) 16:08:25.88ID:7Ack2Qhi
>>453 の補足
 △GIXi ∽ △X。CXi
なので…
もう少し補足が必要である。。。
456132人目の素数さん
2024/04/23(火) 17:25:53.64ID:F7CNSCrw
f(p,q) = |12√17 - p√q| とする。
f(p,q)≠0の条件下で正整数p,qを動かすとき、f(p,q)を最小にするp,qをすべて求めよ。
457132人目の素数さん
2024/04/23(火) 17:57:20.23ID:mBdwwsnl
>>454
既知の直線上で定規で対称点が確定できる(たとえば長さを計るのがゆるされるとか)なら、
中点も確定できるのではないかなぁ、と思った。
458132人目の素数さん
2024/04/23(火) 18:25:38.51ID:mBdwwsnl
作図をアニメーションにしてみた。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
459132人目の素数さん
2024/04/23(火) 18:33:20.03ID:mBdwwsnl
>>453
すみません、誤解していました。
角度が1/3ではなくて、傾きが1/3でした。
460132人目の素数さん
2024/04/23(火) 19:13:31.43ID:mBdwwsnl
>>452
R言語のお告げ(Nelder-Mead法)によれば、
直角二等辺三角形になるときが最大(厳密には極大値だが)。
461448
2024/04/23(火) 21:26:44.77ID:7Ack2Qhi
>>450
 直線は (周との交点を利用すれば) 反転できるので、
 その点を通る直線を2本曳けば良さげ

>>457
 中点は 定規だけでは難しい鴨
 
462132人目の素数さん
2024/04/23(火) 21:35:33.02ID:QOQcIrlk
>>461
>中点は 定規だけでは難しい鴨
無理
463132人目の素数さん
2024/04/23(火) 22:03:47.25ID:Ep53ozuL
二次方程式 x^2-sx+t=0が、0以上1以下の範囲に二つの解(重解含む)をもつための条件は、

・半物式 s^2-4t≧0
・軸 0≦s/2≦1
・f(0)=t≧0, f(1)=1-s+t≧0
を合わせたもの、でいいですか。
464132人目の素数さん
2024/04/23(火) 22:06:34.43ID:7Ack2Qhi
>>456
 ppq = 12*12*17 + 1 = 2449 = 31*79,
∴ (p, q) = (1, 2449)
465132人目の素数さん
2024/04/23(火) 22:39:00.69ID:7Ack2Qhi
>>458
 いいね✌
 P と P_ は 無くてもいいかな。
 E~ の作図 >>448 はあった方がいいよね。
466132人目の素数さん
2024/04/23(火) 23:09:12.34ID:bT32WDi6
∫[0,∞]{1/(1+e^x) - 1/(1+e^(2x))}/x dx を求めよ。
467132人目の素数さん
2024/04/23(火) 23:37:21.50ID:nfeXM0n/
F(a) = ∫[0,∞]{1/(1+e^x) - 1/(1+e^(ax))}/x dx
F'(a) =∫[0,∞]e^(ax)/(1+e^(ax))^2 dx = 1/(2a)
F(0) = 0
F(a) = log(a)/2
468132人目の素数さん
2024/04/24(水) 00:29:32.87ID:1evHUg6J
nを正の整数とする。
(1)sin(2nx)/sin(x) = 2Σ[k=1,n] cos((2k-1)x) を示せ。
(2)∫[0,π/2] (sin(2nx)/sin(x))^2 dx = nπ を示せ。
(3)πn - π/2 < ∫[0,π/2] (sin(2nx)/x)^2 dx < πn を示せ。
(4)∫[0,∞] (sin(x)/x)^2 dx を求めよ。
469132人目の素数さん
2024/04/24(水) 01:27:19.33ID:m0i89ept
f(x) := indicator of [-1/2,1/2]
F(f) = ∫[-∞,∞]f(x)exp(2πixt)dx
= 1/(2πit)(exp(πit)-exp(-πit))
= sin(πt)/(πt)
∫[-∞,∞] (sin(πt)/(πt))^2dt = ∫[-∞,∞] f(x)^2dx = 1
∫[-∞,∞] (sin(u)/(u))^2du = π
470132人目の素数さん
2024/04/24(水) 02:21:11.48ID:LloxEhQT
>>466
〔参考書〕
高木貞治「解析概論」改訂第三版、岩波書店 (1961)
  第4章、§48.定理42.p.166~167

>>467
 F(1) = 0,  (← 揚足取 御免)

>>468
(1) 和積公式より
 sin(2kx) - sin(2(k-1)x) = 2sin(x)・cos((2k-1)x),
 k = 1,2,…,n でたす。

(2) 積和公式より
 4∫[0,π/2] cos((2i-1)x) cos(2j-1)x) dx
 = 2∫[0,π/2] {cos(2(i+j-1)x) + cos(2(i-j)x)} dx
 = 2∫[0,π/2] cos(2(i-j)x) dx
 = δ_(i,j)・π,
 i, j = 1,2,…,n でたす。

(3)
 1/sin(x)^2-1 = 1/tan(x)^2 < 1/x^2 < 1/sin(x)^2,
を(2)に入れると
 ∫[0,π/2] (sin(2nx)/x)^2 dx = (n-θ/2)π  (0<θ<1)

(4)
 ∫[0,∞] (sin(y)/y)^2 dy
  = lim[n→∞] ∫[0,nπ] (sin(y)/y) dy
  = lim[n→∞] (1/2n)∫[0,π/2] (sin(2nx)/x)^2 dx
  = lim[n→∞] (π/2n) (n-θ/2)     (0<θ<1)
  = lim[n→∞] (π/2) (1-θ/2n)
  = π/2.
471132人目の素数さん
2024/04/24(水) 03:22:38.98ID:LloxEhQT
〔参考書〕
高木貞治「解析概論」改訂第三版、岩波書店 (1961)
 第4章、§48.[例4] 式(10) p.169 (はなはだ技巧的)
 第5章, 練習問題(5)-(4)  p.264 (見通しよい)
472132人目の素数さん
2024/04/24(水) 07:44:11.11ID:vygCixOx
>>448
後半を読み落としておりました。
>作図方法は
>EF, BC → G
EFを結ぶ直線とBCを結ぶ直線の交点をGとするという意味ですね。

>>465
PとP_を外してE_の作図過程までを入れた結果。(流石にKの作図過程は省略)
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
アニメーション化したらアップします。

直線を引く機能だけの定規のみで長方形の辺の中点が求められることに感銘しました。
473132人目の素数さん
2024/04/24(水) 07:48:50.30ID:vygCixOx
朝の課題

複素平面上で点a,bを結ぶ直線と点c,dを結ぶ直線の交点の座標を計算する関数を作れ。

例:R言語でのコード
intsect <- function(a,b,c,d){
a1=Re(a) ; a2=Im(a)
b1=Re(b) ; b2=Im(b)
c1=Re(c) ; c2=Im(c)
d1=Re(d) ; d2=Im(d)

if((a2-b2)*(c1-d1)==(a1-b1)*(c2-d2) | (a-b)*(c-d)==0) return(NULL)
if(a1==b1 & c1!=d1) return( a1+1i*((d2-c2)/(d1-c1)*(a1-c1)+c2) )
if(a1!=b1 & c1==d1) return( c1+1i*((a2-b2)/(a1-b1)*(c1-a1)+a2) )

p=(a2-b2)/(a1-b1)
q=(c2-d2)/(c1-d1)

x= ((p*a1 - a2) - (q*c1 - c2))/ (p-q)
y= p*x - (p*a1 - a2)
return( x + 1i*y )
}
474132人目の素数さん
2024/04/24(水) 08:06:23.92ID:+La1smCX
>>462が恥ずかしく見える
475132人目の素数さん
2024/04/24(水) 08:49:33.24ID:AHiYNm6q
>>474
直感的にはそう思うよね。
線分だけなら無理だけど長方形の辺なら中点がだせるから
正三角形(あるいは正多角形)でも可能だろうか?
476132人目の素数さん
2024/04/24(水) 09:30:59.74ID:vygCixOx
>>472
アニメ化
E,Fは対角線上の任意の点なので色を変えた。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
477132人目の素数さん
2024/04/24(水) 09:50:48.00ID:fCNLdCqW
>>464
素晴らしい
こんなに鮮やかに解くとは
478132人目の素数さん
2024/04/24(水) 09:54:25.39ID:vygCixOx
>>476
E,Fの位置を変えても中点が求まることを体感。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
479132人目の素数さん
2024/04/24(水) 09:57:41.56ID:vygCixOx
>>473
それをWolframに移植(言語の練習)

intsect[a_,b_,c_,d_] :=(
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
d1=Re[d] ; d2=Im[d];
If[(a2-b2)(c1-d1)==(a1-b1)(c2-d2) || (a-b)*(c-d)==0, re=Null];
If[a1==b1 && c1!=d1, re=a1+((d2-c2)/(d1-c1)(a1-c1)+c2)I];
If[a1!=b1 && c1==d1, re=c1+((a2-b2)/(a1-b1)(c1-a1)+a2)I];
p=(a2-b2)/(a1-b1);
q=(c2-d2)/(c1-d1);
x= ((p*a1 - a2) - (q*c1 - c2))/ (p-q);
y= p*x - (p*a1 - a2);
re=x+y*I
)

RのifとWolframのIfでの仕様が異なるので不具合が生じた。
if文はRはFALSEならその後は評価しないが、Wolframはその続きも評価する違い。
480132人目の素数さん
2024/04/24(水) 10:25:53.54ID:4QhK5edU
ifが原因ではない。returnは、「関数から抜けろ/戻れ」という命令。
481132人目の素数さん
2024/04/24(水) 10:33:07.58ID:fCNLdCqW
今日の積分

∫[0,1] {√(1-√x)}/{√(1+x)} dx
482132人目の素数さん
2024/04/24(水) 11:30:55.44ID:AHiYNm6q
>>480
Rの方は動作しているんだが、動かしてから言ってる?
Rのコードはx,y軸に平行な場合もreturn命令で正しい値を返して来るよ。
Wolframだと軸に平行な場合は0除算を含む式まで評価しようとするので
エラーを返してくる。
483132人目の素数さん
2024/04/24(水) 11:32:05.85ID:2eGWFnPH
そもそもif使ってる時点で無能
484132人目の素数さん
2024/04/24(水) 11:40:49.27ID:AHiYNm6q
Rの場合は関数定義内に可読性をよくするために空白行をおけるけど、
Wolfram言語だとそれは許されない。
これに気づいてデバッグするのに時間がかかった。
;
だけなら関数定義内と認識してくれる。

んで、
複素平面上で点a,bを結ぶ直線と点c,dを結ぶ直線の交点の座標を計算する関数を作れ。
の例

intsect[a_,b_,c_,d_] :=(
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
d1=Re[d] ; d2=Im[d];
;
mxn11=Det[{{a1,a2},{b1,b2}}];
mxn12=a1-b1;
mxn21=Det[{{c1,c2},{d1,d2}}];
mxn22=c1-d1;
mxn=Det[{{mxn11,mxn12},{mxn21,mxn22}}];
mxd=Det[{{a1-b1,a2-b2},{c1-d1,c2-d2}}];
x=mxn/mxd;
;
myn11=mxn11;
myn12=a2-b2;
myn21=nxn21;
myn22=c2-c2;
myn=Det[{{myn11,myn12},{myn12,myn22}}];
myd=mxd;
y=myn/myd;
;
x+y*I
)


intsect[0I,1+0I,0+1I,1+1I]
intsect[0I,2+0I,1+1I,1+2I]
intsect[0I,2I,-1+1I,1+1I]
intsect[0I,2+0I,-1+1I,1+2I]
intsect[0,1+2I,3+4I,5+6I]
の結果はRの出力と合致。
分数や累乗根表示してくれるからWolframだと厳密解がだせていいのだが、
無料のWolframScriptはテキストベースなので作図は慣れたRでやっている。
485132人目の素数さん
2024/04/24(水) 12:32:57.51ID:2eGWFnPH
https://www.wolframalpha.com/input?i=Cross%5B%7B1%2C+2%2C+3%7D%2C+%7B3%2C+4%2C+5%7D%5D&lang=ja
486132人目の素数さん
2024/04/24(水) 13:43:58.30ID:4QhK5edU
>>482
逆の言い方をすると、Rがあれで上手くいっているのは、
真になるif文に出会った時、return命令に従って関数を抜けているから。
その際、returnの直後に書かれているものが、関数の値となる。

mathematica方の、re=...はただの代入文。関数から抜ける命令など含まれていない。
流れに従って次の命令が実行される。
あの書き方では、三つのIf文は、必ず処理され、reに何かの値が代入されるかもしれないが、いずれ場合であろうとも、
re=x+y*Iが最終的な値になる。その計算の最中にエラーが生じる。

If文をネストして正しい流れのプログラムにする方法もあるが、次のような方法もある。
re=Which[
(a2-b2)(c1-d1)==(a1-b1)(c2-d2),Null,
(a-b)*(c-d)==0,Null,
a1==b1 && c1!=d1,a1+((d2-c2)/(d1-c1)(a1-c1)+c2),
a1!=b1 && c1==d1,re=c1+((a2-b2)/(a1-b1)(c1-a1)+a2)I,
True,p=(a2-b2)/(a1-b1);q=(c2-d2)/(c1-d1);x= ((p*a1 - a2) - (q*c1 - c2))/ (p-q);y= p*x - (p*a1 - a2);x+y*I
]
487132人目の素数さん
2024/04/24(水) 17:02:49.13ID:2kGn23Re
>>463は間違ってますか
488132人目の素数さん
2024/04/24(水) 17:09:42.09ID:oH2qzlTZ
>>472
>流石にKの作図過程は省略
これどうやるの?CJ=BK?無理では?
489132人目の素数さん
2024/04/24(水) 17:13:38.49ID:LloxEhQT
>>463
「半物式」以外は正しいと思いますが…
490132人目の素数さん
2024/04/24(水) 17:36:01.10ID:LloxEhQT
>>488
CX。の中点をMとし、
DM, BC → N
 CN = BC/3, NJ // BD,
AC, NJ → P
台形BNPX。の対角線の交点Xp
AB, CXp → K
 BK = AB/3,
とか 無理?
491132人目の素数さん
2024/04/24(水) 18:01:12.56ID:oH2qzlTZ
>>490
>CX。の中点をM
どう中点取るの?
492132人目の素数さん
2024/04/24(水) 18:16:17.62ID:32/fY20q
難問らしいです
教えて下さい

【問題】
任意の t∈[0,1],x∈(-∞,∞) に対して
y=a x^2 + b t^3 x^3 + c t^5 x^4
が最大値をもつ実数 a,b,c の必要十分条件を求めよ
493132人目の素数さん
2024/04/24(水) 19:16:41.57ID:XEE0BdoB
また無能が暴れてるのか
494132人目の素数さん
2024/04/24(水) 20:21:33.09ID:j45PZ9WY
>>481
難しいですか?
495132人目の素数さん
2024/04/24(水) 20:25:19.40ID:GboDzPxa
>>492
>任意の t∈[0,1],x∈(-∞,∞) に対して
>y=a x^2 + b t^3 x^3 + c t^5 x^4
>が最大値をもつ
tとxの2変数で最大値??
それ高校範囲なの?
ともあれt=0だとy=ax^2だから
最大値を持たねばならないことからa<0
t>0ならc>0ならNgc<0ならOk
c=0ならb≠0ならNgb=0ならa<0
結局a<0かつ(b=c=0またはc<0)
496132人目の素数さん
2024/04/24(水) 21:04:47.44ID:vygCixOx
>>464
12^2*17 - 1 = 2447 素数
p=1, q=2447の方が近似していない?
497132人目の素数さん
2024/04/24(水) 21:09:49.22ID:vygCixOx
>>488
BD間にE、AC間にFをとって、同等の操作をすればいいんじゃない?
498490
2024/04/24(水) 21:15:54.55ID:LloxEhQT
>>491
GI // CX。より CGIX。は台形です。
対角線の交点をXi とし、   >>435, 453
 BXi, CX。 → M
 BXi, GI → M'
とおきます。

Bを中心にして 相似三角形を考えると
 CM:MX。= GM':M'I
Xi を中心にして 相似三角形を考えると
 MX。:CM = GM':M'I

∴ CM:MX。= MX。:CM
∴ CM = MX。
Mは線分CX。の中点です。
499イナ ◆/7jUdUKiSM
2024/04/24(水) 21:27:49.55ID:mCM4/uQ3
>>250
>>452
△ABCが一辺xの正三角形のとき、
S=x^2√3/4
θ=π/3
ピタゴラスの定理より(1-x/√2)^2+1^2=x^2
x^2+2x√2-4=0
x=√6-√2
T=Sθ=πx^2√3/12
=(π√3/12)(8-4√3)
=(2√3-3)π/3
△ABCのうちたとえば頂点Aが正方形の頂点にあるとすると、
B,CはAに対しいちばん遠い頂点から双方の辺上x/√2=√3-1の位置にある。
∴示された。
500464
2024/04/24(水) 21:33:12.13ID:LloxEhQT
>>496

f(1,2447) = 12√17-√2447
  = 1/(12√17 + √2447)
  = 0.01010668328538…

f(1,2449) = √2449-12√17
  = 1/(12√17 + √2449)
  = 0.01010461922256…
  = (最小値)
501132人目の素数さん
2024/04/24(水) 21:35:10.27ID:GboDzPxa
>>497
それでCJ=BKとなることを証明して
502132人目の素数さん
2024/04/24(水) 21:43:08.30ID:GboDzPxa
>>498
>GI // CX。
すまんこれというかGH//ACはどうして?
503132人目の素数さん
2024/04/24(水) 22:00:01.29ID:vygCixOx
>>488
Kが確定するまでの図
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

その過程のアニメーション(点の名称は省略)
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
対角線上にとる点は乱数発生させて選んだ。
504132人目の素数さん
2024/04/24(水) 22:25:49.46ID:vygCixOx
>>500
失礼しました。こちらの計算ミスでした。
505132人目の素数さん
2024/04/24(水) 22:35:10.29ID:vygCixOx
K確定以後の点の命名は青色で表記した。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
BK=AB/3は既出、∴ CJ=DC/3
506132人目の素数さん
2024/04/24(水) 22:44:27.24ID:vygCixOx
>>499
三角形の頂点が正方形の3点にあるとき
S=1/2
最大内角θ=π/2
Tθ= π/4 = 0.785398
の方が大きくない?
507132人目の素数さん
2024/04/24(水) 22:55:25.28ID:c7p8gYL7
>>495
う~んそれだと十分条件ですね
508132人目の素数さん
2024/04/24(水) 23:02:57.42ID:j45PZ9WY
>>500
素晴らしい
509132人目の素数さん
2024/04/24(水) 23:07:59.40ID:vygCixOx
G_とL_を結ぶ線分が欠落していた(G_,L_を結ぶ線分と対角線との交点がE_)ので追加。


高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
510132人目の素数さん
2024/04/24(水) 23:40:09.07ID:WaAwBZF7
微分で求められるdy/dx=傾きと言うのは
Xがlim→0の究極に動かない状態での
一瞬の「気配」のようなものですよね?
デルタxが決まらないと2点間の傾きが
決まらないから実効ある数値を取ることは
ないですよね?
511498
2024/04/25(木) 00:24:40.47ID:6S2C/7uf
>>502
 AB, EF' → Q
とおき、対角線の分割比を
 AE:EE':E'C = α:1:α,
 BF:FF':F'D = β:1:β,
とする。
 AB = AQ + QH + HB = (α+1+β) QH,
 HB = βQH = {β/(α+1+β)} AB,
 BC = BG + GL' + L'C = (β+1+α) GL',
 BG = βGL' = {β/(β+1+α)} BC,
∴ HB:BG = AB:BC,
∴ HG // AC,
対角線ACの平行線を曳くことがこの問題のカギになります。
512132人目の素数さん
2024/04/25(木) 00:54:03.73ID:zlRFLPXQ
平行線l,mのl上にA,B,C, m上にX,ZがA→B→C,Z→Xが同じ向きならXZの内分点Yを

 AB:BC = XY:YZ

ととれる
---------------
長方形の重心をOとし一辺上にA,B,Cをこの順に取り対辺上にO対称にA'B'C'をとる
ABの内分点DをAD:DB = A'B':B'C'ととり
B'C'の内分点EをB'E':E'C' = AB:BCととる
このとき
BD = B'E'
513132人目の素数さん
2024/04/25(木) 01:45:39.17ID:o78PVtly
三次方程式 x^3-sx^2+tx-u=0が、
0以上1以下の範囲に三つの解(重解含む)をもつための条件は、
どうなりますか教えてください。
514132人目の素数さん
2024/04/25(木) 01:57:49.80ID:zlRFLPXQ
discriminant≧0
f(x) = x^3 + sx^2 + tx + uの全ての係数≧0
g(x) = (x+1)^3 - s(x+1)^2 + t(x+1) - uの全ての係数≧0
515132人目の素数さん
2024/04/25(木) 03:07:27.22ID:6S2C/7uf
・極値(停留値を含む)をもつ
 f '(x) = 3xx-2sx+t = 0 が2実解をもつ
 D_2 = ss-3t ≧ 0,
 α = {s-√(ss-3t)}/3,
 β = {s+√(ss-3t)}/3,

・3実解(重解を含む)をもつ
 D_3 =-f(α)f(β)
  = (1/27)^2・{4(ss-3t)^3-(2s^3-9st+27u)^2}
  = (1/27){(st)^2 +18stu-4(s^3)u-4t^3-27uu}
  ≧ 0,

・変曲点のx座標 s/3 が範囲内にある。
  0 ≦ s/3 ≦ 1,

・また 切片が
 f(0) =-u ≦ 0,
 f(1) = 1-s+t-u ≧ 0,
を満たす。
516132人目の素数さん
2024/04/25(木) 06:08:04.59ID:N1Wqmr3J
>>486
ご助言と、改訂コードの投稿ありがとうございました。
517132人目の素数さん
2024/04/25(木) 06:13:11.98ID:N1Wqmr3J
WolframにはRのswitchに相当するWhichという条件分岐があることを知りました。
ちなみにRのwhichはTRUEになるindexを返す関数。
他の人のコードを読むのは勉強になります。

ありがとうございました。
518132人目の素数さん
2024/04/25(木) 06:34:49.85ID:KToaGxfb
>>516
お前尿瓶だろ
519132人目の素数さん
2024/04/25(木) 07:28:42.98ID:JTmgmSn6
>>511
ありがとう
NJ // BD
はどうして?
520132人目の素数さん
2024/04/25(木) 07:33:36.44ID:PiWgohuV
>>484
複素点 a, b, c, dでa,b や c,dが
2直線を形成しない座標であったり、平行なときを場合分けして
a,bを結ぶ直線とc,dを結ぶ直線の交点を返す関数を修正。

intsect[a_,b_,c_,d_] :=(
If[(a-b)(c-d)==0,Return["Not two lines."]];
;
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
d1=Re[d] ; d2=Im[d];
;
mxn11=Det[{{a1,a2},{b1,b2}}];
mxn12=a1-b1;
mxn21=Det[{{c1,c2},{d1,d2}}];
mxn22=c1-d1;
mxn=Det[{{mxn11,mxn12},{mxn21,mxn22}}];
mxd=Det[{{a1-b1,a2-b2},{c1-d1,c2-d2}}];
;
If[mxd==0,Return["Two lines are pararell."]];
x=mxn/mxd;
;
myn11=mxn11;
myn12=a2-b2;
myn21=nxn21;
myn22=c2-c2;
myn=Det[{{myn11,myn12},{myn12,myn22}}];
myd=mxd;
y=myn/myd;
;
x+y*I
)

intsect[0,0,1,1I]
intsect[0I,1+0I,0+1I,1+1I]
intsect[0I,2+0I,1+1I,1+2I]
intsect[0I,2I,-1+1I,1+1I]
intsect[0,1+2I,3+4I,5+6I]
521132人目の素数さん
2024/04/25(木) 08:15:25.60ID:zlRFLPXQ
p,q,r が実ならTFAE
(1) p,q,r ≧ 0
(2) p+q+r,qr+rp+pr,pqr ≧ 0
Suppose (2) ∧ not (1)
WMA p≧q≧r
Then we have
p≧0≧q≧r, p≧-(q+r)
Then
pq + pr ≦ -(q+r)^2
∴ pq + pr + qr ≦ -q^2+qr-p^2 ≦ -(q-r)^2 - qr ≦0
∴ q = r = 0 ∧ p = p+q+r - (q+r) ≧ 0
522132人目の素数さん
2024/04/25(木) 08:45:21.23ID:JTmgmSn6
>>519
メネラウスか
たしかにこれでDJ:JC=2:1となるので
反対側も同様にしてAK:KB=2:1の点を取れるということね
お見事です
523132人目の素数さん
2024/04/25(木) 09:47:09.93ID:6t9+fbxx
この定積分が解けません
よろしくお願いいたします

∫[0,1] {√(1-√x)}/{√(1+x)} dx
524132人目の素数さん
2024/04/25(木) 11:17:44.12ID:Cxr5E7xs
Wolfram Alphaでは超幾何関数になった
高校の範囲ではなさそう
525132人目の素数さん
2024/04/25(木) 11:25:04.58ID:PiWgohuV
平行な場合やA=Bとかだと交点が存在しないからIfを使って場合分けする必要があると思うんだが、Ifなしで可能なのか?
526132人目の素数さん
2024/04/25(木) 11:32:39.73ID:JTmgmSn6
>>507
むしろ必要でしょ?
527132人目の素数さん
2024/04/25(木) 12:49:17.04ID:zlRFLPXQ
アホifだらけのクソコード
528132人目の素数さん
2024/04/25(木) 14:00:52.79ID:KToaGxfb
>>520

687:卵の名無しさん (JP 0Hef-If86 [202.253.111.210]):2024/04/25(木) 13:57:43.89 ID:6CMGEqZoH
>>681
お前って日本語理解出来ないよな
考えがまとまらなくて会話出来ない
どう考えても統合失調症だよ
529132人目の素数さん
2024/04/25(木) 14:07:20.06ID:6t9+fbxx
この定積分をよろしくお願いいたします

∫[0,1] {√(1-√x)}/{√(1+√(x))} dx
530132人目の素数さん
2024/04/25(木) 14:19:46.10ID:IIPJu16B
そもそも
(a-b)(c-d) == 0
は直線が一つである条件になってないし
めちゃくちゃやん
531515
2024/04/25(木) 14:37:12.87ID:6S2C/7uf
(追加)
・0 < α < β < 1
から
 t > Max{2s-3, 0}
532132人目の素数さん
2024/04/25(木) 15:15:18.22ID:6S2C/7uf
>>529
 x = (cosθ)^2 とおくと
 √{(1-√x)/(1+√x)} = √{(1-cosθ)/(1+cosθ)}
   = (1-cosθ)/sinθ,
 dx = -2sinθcosθ dθ,

 ∫ (1-cosθ)・2cosθ dθ
 = ∫ {-1+2cosθ-cos(2θ)} dθ
 = -θ + sinθ(2-cosθ),

∴ (与式) = [-θ + sinθ(2-cosθ) ](θ:0→π/2)
  = 2-π/2
  = 0.4292036732
533132人目の素数さん
2024/04/25(木) 15:47:06.51ID:HphAzvEJ
微分はある1点の傾きと習いました
3次関数の傾きは2次関数になるんですか?
何故3次関数を微分すると2次関数が出るんですか?
534132人目の素数さん
2024/04/25(木) 16:24:35.07ID:6af+EbJO
高校範囲で解ける定積分で面白いものはありませんか?

∫[0,π/4] xtan(x) dx
はどうですか?
535132人目の素数さん
2024/04/25(木) 16:46:24.55ID:zlRFLPXQ
https://www.wolframalpha.com/input?i=%E2%88%AB%5B0%2C%CF%80%2F4%5D+xtan%28x%29+dx&lang=ja
536132人目の素数さん
2024/04/25(木) 22:36:53.58ID:gPA5N6cT
>>495
答は

a<0,c<0またはa≦0,b=0,c≦0
537132人目の素数さん
2024/04/25(木) 22:48:11.57ID:eTtMkA6L
>>530
それはエラー処理のルーチン。
二次方程式の解の公式に想定外のa=0を入力したときの処理みたいなもの。
538132人目の素数さん
2024/04/25(木) 23:00:41.92ID:gAqHowpt
>>534
∫[0,π] (x sin x)/(1 + (sin x)^2) dx
はどうですか
539132人目の素数さん
2024/04/25(木) 23:27:53.08ID:gAqHowpt
>>534
この問題はどう?
f(x) = {∫[0,x] e^(-t^2)dt}^2,
g(x) = ∫[0,1] e^(-x^2(1+u^2))/(1+u^2)du
とするとき
(1) f'(x)+g'(x)=0 を示せ。
(2) lim[x→∞] f(x) を求めよ。
540132人目の素数さん
2024/04/25(木) 23:32:55.07ID:lXQEm2Sb
◆Wolfram入力フォーム御用達

原始ピタゴラス数x^2+y^2=z^2 の
出力アルゴリズム

[z-y=1]

Table[2n{(n+1)^(C(1,a-2))}+C(0,3mod a),{n,1,50},{a,1,3}]

[z-y=2]

Table[4(n+1)^{(C(1,a-1))+1}+(C(1,a-1))(-1)^a,{n,1,30},{a,0,2}]

[z-y=8]

Table[4(2n+3)+{(2n+1)^(2C(1,a-1))}(C(1,a-1))-8(C(0,a-1)),{n,1,30},{a,0,2}]
541132人目の素数さん
2024/04/25(木) 23:33:54.62ID:zlRFLPXQ
>>507
ホントに頭悪いんやな?
(a-b)(c-d) == 0
なら
(a,b,c,d) = (1+i,1+i,2+i,1+2i)
でnot rwo lineやろ
(a,b,c,d) = (1,2,3,4)
はtwo lineじゃないやろ
ここまで書いてもらわんとわからんの
542511
2024/04/25(木) 23:36:49.86ID:6S2C/7uf
α、βの定義から
 BH:HQ:QA = β:1:α,
 BG:GL':L'C = β:1:α,

∴ HG // QL' // AC
  QL // HG' // BD
543132人目の素数さん
2024/04/25(木) 23:46:49.70ID:rXD6kl+m
>>537
アンタの頭がエラーみたい
544132人目の素数さん
2024/04/26(金) 00:46:29.25ID:4FSkTY1U
なるほどw
直線ABと直線CDでA=BまたはC=Dの場合に
 not two line
と返すのかwww
アホ~
wwwwwwwwwwwwwwwwwwwwwwwwwwwww
545132人目の素数さん
2024/04/26(金) 06:26:52.72ID:xDkVD5ro
>>541
バグ指摘ありがとう。
1直線上にある場合や1点にある場合の場合分けが欠落しているな。
1点と1直線になる場合は Not two lines でいいんじゃないの?
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

ちなみに
not rwo line は not two lines
に脳内変換してレスしている。
546132人目の素数さん
2024/04/26(金) 06:27:56.07ID:sW1EDmTR
>>541
バグ指摘ありがとう。
1直線上にある場合や1点にある場合の場合分けが欠落しているな。
1点と1直線になる場合は Not two lines でいいんじゃないの?
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

ちなみに
not rwo line は not two lines
に脳内変換してレスしている。
547132人目の素数さん
2024/04/26(金) 06:28:20.78ID:sW1EDmTR
Phimoseくんなら
twoのスペルもできない、
lineの複数形も書けないと他スレにまで遠征してwwwww付きで荒らしまくる題材にするんだろうな。
548132人目の素数さん
2024/04/26(金) 06:42:16.75ID:4FSkTY1U
a == b || c == d
を平気で
(a-b)*(c-d) == 0
と書くゴミwwwww
ツッコミどころ満載のきっちゃないコードを恥ずかしげもなく晒してご満悦wwwwwwwwwwwwwwwwww
549132人目の素数さん
2024/04/26(金) 06:46:32.72ID:7wERYBuS
インド建国の父ガンジー
人類の7つの罪

①原則なき政治    
②道徳なき商業   
③労働なき富     
④人格なき学識
⑤人間性なき科学    
⑥良心なき快楽    
⑦献身なき信仰
550132人目の素数さん
2024/04/26(金) 07:56:53.99ID:Yo4WI1jI
>>544
not two line.はalignを意味しない。
>545はalignではないがnot two linesである。
551132人目の素数さん
2024/04/26(金) 08:02:07.83ID:7nxzum9R
エラーメッセージを修正する方が楽だな

複素点 a, b, c, dでa,b や c,dが
2直線を形成しない座標であったり、平行なときを場合分けして
a,bを結ぶ直線とc,dを結ぶ直線の交点を返す関数を修正。

intsect[a_,b_,c_,d_] :=(
If[(a-b)(c-d)==0,Return["Not two lines."]];
;
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
d1=Re[d] ; d2=Im[d];
;
mxn11=Det[{{a1,a2},{b1,b2}}];
mxn12=a1-b1;
mxn21=Det[{{c1,c2},{d1,d2}}];
mxn22=c1-d1;
mxn=Det[{{mxn11,mxn12},{mxn21,mxn22}}];
mxd=Det[{{a1-b1,a2-b2},{c1-d1,c2-d2}}];
;
If[mxd==0,Return["align or parallel toとは
X
"]];
x=mxn/mxd;
;
myn11=mxn11;
myn12=a2-b2;
myn21=nxn21;
myn22=c2-c2;
myn=Det[{{myn11,myn12},{myn12,myn22}}];
myd=mxd;
y=myn/myd;
;
x+y*I
)

intsect[0,0,1,1I]
intsect[0I,1+0I,0+1I,1+1I]
intsect[0I,2+0I,1+1I,1+2I]
intsect[0I,2I,-1+1I,1+1I]
intsect[0,1+2I,3+4I,5+6I]
552132人目の素数さん
2024/04/26(金) 08:02:45.02ID:Medstow9
>>548
こういう方法もあるって書かれたものに対してそこまで罵倒する気になれる情熱凄いな
553132人目の素数さん
2024/04/26(金) 08:05:07.04ID:7nxzum9R
未完成のまま送信されたので再掲

エラーメッセージを修正する方が楽だな

複素点 a, b, c, dでa,b や c,dが
2直線を形成しない座標であったり、平行なときを場合分けして
a,bを結ぶ直線とc,dを結ぶ直線の交点を返す関数

intsect[a_,b_,c_,d_] :=(
If[(a-b)(c-d)==0,Return["Not two lines."]];
;
a1=Re[a] ; a2=Im[a];
b1=Re[b] ; b2=Im[b];
c1=Re[c] ; c2=Im[c];
d1=Re[d] ; d2=Im[d];
;
mxn11=Det[{{a1,a2},{b1,b2}}];
mxn12=a1-b1;
mxn21=Det[{{c1,c2},{d1,d2}}];
mxn22=c1-d1;
mxn=Det[{{mxn11,mxn12},{mxn21,mxn22}}];
mxd=Det[{{a1-b1,a2-b2},{c1-d1,c2-d2}}];
;
If[mxd==0,Return["align or parallel"];
x=mxn/mxd;
;
myn11=mxn11;
myn12=a2-b2;
myn21=nxn21;
myn22=c2-c2;
myn=Det[{{myn11,myn12},{myn12,myn22}}];
myd=mxd;
y=myn/myd;
;
x+y*I
)

intsect[0,0,1,1I]
intsect[0I,1+0I,0+1I,1+1I]
intsect[0I,2+0I,1+1I,1+2I]
intsect[0I,2I,-1+1I,1+1I]
intsect[0,1+2I,3+4I,5+6I]
554132人目の素数さん
2024/04/26(金) 08:05:34.22ID:++dpQmqA
>>546
アンタの頭バグだらけみたいだね
さっさとお薬飲めば
555132人目の素数さん
2024/04/26(金) 08:05:45.22ID:7nxzum9R
>>548
あんたがきれいなコードをアップすればいいだけ。
556132人目の素数さん
2024/04/26(金) 08:08:19.58ID:++dpQmqA
>>546
頭悪いんやなにはダンマリ決め込んでて草
事実だもんな
557132人目の素数さん
2024/04/26(金) 08:14:50.42ID:Medstow9
>>556
頭悪いの定義がなくその命題は正しいとは言えないからだろ
558132人目の素数さん
2024/04/26(金) 09:06:32.30ID:4FSkTY1U
そう、この英文が誤解を生む
ある程度英語に慣れてくると英語のnotは基本直後の語を修飾する事、したがって" not two lines"は"lineが二本ない、被ってる"とまず読んでしまう
こんな表現をする意味がない
"illegal line data"とかならまだしも
559132人目の素数さん
2024/04/26(金) 09:31:46.17ID:UUkM57fP
ここでいいのか分からないけど
ある家庭に2人の子供がいて、一人は男の子の場合の
もう一人も男の子の確率なんだけど
その男の子が第一子の場合と第二子の場合の確率は半々だから
その片割れが男の子の確率は50%
どこがおかしいのでしょうか?
560132人目の素数さん
2024/04/26(金) 09:38:31.32ID:emNMekEl
>>538
これノーヒントで解けるんですか?
一見なんの手がかりもありませんね
561132人目の素数さん
2024/04/26(金) 09:40:41.66ID:emNMekEl
今日の積分

∫[0,1] (√x)*ln(1+x) dx
562132人目の素数さん
2024/04/26(金) 10:45:05.26ID:7nxzum9R
>>552
助言よりも罵倒を生き甲斐にしているのが、Phimoseくんらの集団
愛用の文字はw。
嵌頓したforeskinの形状を象徴している。
563132人目の素数さん
2024/04/26(金) 12:13:43.56ID:2TfJijRL
>>562
相変わらず日本語通じないチンパンだね
564132人目の素数さん
2024/04/26(金) 12:16:55.68ID:++dpQmqA
>>562
アンタのどこが助言なの?w
ただまともな人間には全く通じないチンパン言語で発狂してるだけじゃん
565132人目の素数さん
2024/04/26(金) 12:35:10.71ID:1ydbcB63
>>560
ヒント:x=π-t で置換する
566132人目の素数さん
2024/04/26(金) 15:27:06.36ID:oEIwRUvS
ヒントより
I = ∫[0,π] x sin(x)/[1 + sin(x)^2] dx
 = ∫[0,π] (π-t) sin(t)/[1 + sin(t)^2] dt
相加平均して
I = (π/2)∫[0,π] sin(x)/[1 + sin(x)^2] dx
 = (π/2)∫[0,π] sin(x)/[2-cos(x)^2] dx
 = (π/2)∫[-1,1] du/(2-uu)      (u=cos(x))
 = (π/(4√2))∫[-1,1] {1/(√2 +u) + 1/(√2 -u)} du
 = (π/(4√2))[ log|(√2 +u)/(√2 -u)| ](u:-1→1)
 = (π/√2) log(1+√2)
 = 1.9579198…
567イナ ◆/7jUdUKiSM
2024/04/26(金) 16:01:26.77ID:nkxlT+vw
>>499
>>506大きかった。
∴△ABCの頂点が正方形のいずれかにあるとき。
568132人目の素数さん
2024/04/26(金) 17:17:20.76ID:OGnmnnWb
一辺の長さが1の正方形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるようなA,B,Cの位置を求めよ。
569132人目の素数さん
2024/04/26(金) 18:12:29.72ID:oEIwRUvS
>>561
(3/2)∫ (√x)*ln(1+x) dx
 = x^{3/2} ln(1+x) -∫ x^{3/2} /(x+1) dx   (← 部分積分)
 = x^{3/2} ln(1+x) -∫ {√x-1/√x + 1/((x+1)√x)} dx
 = x^{3/2} ln(1+x) -(2/3)x^{3/2} + 2√x-2∫1/(x+1)・dx/(2√x)
 = x^{3/2} ln(1+x) -(2/3)x^{3/2} + 2√x-2arctan(√x),

∵ x=uu とおくと
 ∫1/(x+1)・dx/(2√x) = ∫1/(uu+1) du = arctan(u) = arctan(√x)

x:0→1 として
 (与式) = (2/3){ln(2) + 4/3-π/2} = 0.30379458…
570132人目の素数さん
2024/04/26(金) 20:15:34.71ID:dRR5FXQn
a==b || c==d と (a-b)*(c-d)==0 でどちらが速いか100万回で計測

> f1=\(a,b,c,d) a==b || c==d
> f2=\(a,b,c,d) (a-b)*(c-d)==0
> k=1e6
> system.time(replicate(k,f1(runif(1),runif(1),runif(1),runif(1))))
user system elapsed
0.17 0.00 3.02
> system.time(replicate(k,f2(runif(1),runif(1),runif(1),runif(1))))
user system elapsed
0.16 0.00 2.92
> f1=\(a,b,c,d) a==b || c==d
> f2=\(a,b,c,d) (a-b)*(c-d)==0
> k=1e6
> system.time(replicate(k,f1(runif(1),runif(1),runif(1),runif(1))))
user system elapsed
0.25 0.00 3.02
> system.time(replicate(k,f2(runif(1),runif(1),runif(1),runif(1))))
user system elapsed
0.39 0.00 2.99
571132人目の素数さん
2024/04/26(金) 22:40:13.06ID:vZZnPYuR
抛物線y=x^2+ax+bと放物線x=y^2+cy+dが4つの交点をもつとき
それら4点は同一円周上にあるというのですが
それは本当ですか
572132人目の素数さん
2024/04/26(金) 22:48:08.43ID:YV1Po+T7
ん~多分うそ
573132人目の素数さん
2024/04/26(金) 23:35:52.48ID:oEIwRUvS
ん~多分ほんと
 xx+ax-y+b = 0,
 yy-x+cy+d = 0,
辺々たすと
 xx + yy + (a-1)x + (c-1)y + b + d = 0,
 中心((1-a)/2, (1-c)/2)
 R^2 = {(1-a)^2 + (1-c)^2}/4 - (b+d),
574132人目の素数さん
2024/04/27(土) 02:02:45.82ID:gVBxx7ko
二次方程式の解の公式で
a=0のとき二次方程式ではない、というのは正しい!
a=0のとき一次方程式であるというは正しくない。

ちなみに not rwo line は not two linesに脳内変換して議論している。
575132人目の素数さん
2024/04/27(土) 02:09:29.65ID:gVBxx7ko
単数複数を曖昧にできるのが日本語の良さでもある。
 閑さや岩にしみ入る蝉の声
の蝉は単独か複数か受け取る人による。
576132人目の素数さん
2024/04/27(土) 03:47:45.40ID:VxKImJYv
応用問題

一辺の長さが1の正5角形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるようなA,B,Cの位置を求めよ
577132人目の素数さん
2024/04/27(土) 07:43:44.54ID:VxKImJYv
R使いなら知っているかもしれんが、
a b c d が配列のとき
a==b || c==d は エラーを返してくる
(a-b)*(c-d)==0 は配列の要素ごとの結果を配列で返してくる。
578132人目の素数さん
2024/04/27(土) 08:00:59.68ID:VxKImJYv
演習問題

一辺の長さが1の正6角形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるようなA,B,Cの位置を求め、図示せよ。



RやPythonが使える東大合格者向きの課題

一辺の長さが1の正N角形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
△ABCの面積をS、∠A,∠B,∠Cのうち最大のものをθ[rad]とする。
A,B,Cを動かすとき、T=Sθが最大となるような△ABCを図示するプログラムを作り
結果をいくつか示せ。
579132人目の素数さん
2024/04/27(土) 08:03:46.18ID:tI+4URlJ
>>564
助言>567に東大合格者が>567でレスしているのになぁ。
これも自演認定するのかな。
580132人目の素数さん
2024/04/27(土) 08:49:34.09ID:eqFK8/iR
no line
no lines
はありえてもtwoが入るとtwo linesだろうな。
まあ、意味が通じればそれでいいと思う。

文脈からnot rwo lineと誤入力されていてもnot two linesと脳内変換できる。
それができそうもないのがPhimoseくんらの集団
愛用文字は草とwその愛用の由来は解説済。
581132人目の素数さん
2024/04/27(土) 09:08:29.17ID:eqFK8/iR
>>575
受け取る側によるというのは
確率が確信度の度合いを示す指標であるのに似ている。

降水確率は予報士の確信度を示す指標である。

問題
 助言よりも罵倒を喜びとするPhimoseくんが東大合格者である確率は?
582132人目の素数さん
2024/04/27(土) 09:35:49.38ID:bA7THWPq
>>581
アンタの寝言と妄想が助言??
583132人目の素数さん
2024/04/27(土) 09:51:09.20ID:bA7THWPq
誰得な妄想を垂れ流してそれを指摘される度に発狂して論破されてダンマリ決め込んでまた何事もなかったかのように書き込むを長年繰り返してる日本語通じないただの哀れな統失ジジイじゃん>>581
584132人目の素数さん
2024/04/27(土) 10:35:31.58ID:gVBxx7ko
>578の一例(N=7のとき)
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
東大合格者の検証を希望します。

Phimoseくんの草とwの由来を解説したら使用を自粛しているのは
図星だったからみたいだな。
585132人目の素数さん
2024/04/27(土) 10:37:47.41ID:bA7THWPq
たまたま使わなかっただけなのにレスが気になって仕方ないんだね、キモw
phymoseもおかしいとか言われても頑なに執着してるね、そりゃリアルで誰にも相手にされないからここで発狂してるわけだw
586132人目の素数さん
2024/04/27(土) 10:50:01.65ID:EMeU9YBB
>>579
東大合格者()
アンタと同じタダの自称だろw
少なくともアンタの場合はアホすぎて説得力皆無だからここの誰にも信じてもらえてないみたいだけどそれについてはダンマリ?w
587132人目の素数さん
2024/04/27(土) 10:51:15.18ID:EMeU9YBB
まあどうせ日本語通じてないからいつもの文言で発狂するだけだろうがなw
588132人目の素数さん
2024/04/27(土) 11:54:07.76ID:lOu5ti/B
週末の課題
4つの複素点が同一円周上にあるか否かを判定する関数を作り
1+0i,1i,cos(1)+i*sin(1),cos(2)+i*sin(2)でtrueを返すことを確認せよ。
言語はRでもWolfram等何でもよい。
589132人目の素数さん
2024/04/27(土) 12:54:27.70ID:9+SRhodX
https://www.wolframcloud.com/objects/demonstrations/CrossRatiosInTheComplexPlane-source.nb
590132人目の素数さん
2024/04/27(土) 13:25:01.19ID:983mNo/y
インド建国の父ガンジー
人類の7つの罪

①原則なき政治    
②道徳なき商業   
③労働なき富     
④人格なき学識
⑤人間性なき科学    
⑥良心なき快楽    
⑦献身なき信仰
591132人目の素数さん
2024/04/27(土) 13:36:31.48ID:cpeRzBy/
なんだ、ぐうの音も出ないのかw
自称東大合格者()さんw
592132人目の素数さん
2024/04/27(土) 14:26:16.46ID:TD4Hw7I6
「先生、“モル”ってなんですか?」
https://gendai.media/articles/-/56600
を題材にした問題

塩化ナトリウムの分子量を58.44277とする。
1トン(1000kg)の生理食塩水に含まれる塩化ナトリウムのモル数を求めよ。
593132人目の素数さん
2024/04/27(土) 14:39:04.67ID:TD4Hw7I6
>>588
Rだと浮動小数点数の誤差調整が必要。
試作品

is.oncircle <- function(a,b,c,d,tol=1e-16){
tric <- function(a,b,c){
a1=Re(a) ; a2=Im(a)
b1=Re(b) ; b2=Im(b)
c1=Re(c) ; c2=Im(c)
p = (a1^2*(-b2) + a1^2*c2 - a2^2*b2 + a2^2*c2 + a2*b1^2 + a2*b2^2 - a2*c1^2 - a2*c2^2 - b1^2*c2 - b2^2*c2 + b2*c1^2 + b2*c2^2)/(2*(-a1*b2 + a1*c2 + a2*b1 - a2*c1 - b1*c2 + b2*c1))
q = -(a1^2*(-b1) + a1^2*c1 + a1*b1^2 + a1*b2^2 - a1*c1^2 - a1*c2^2 - a2^2*b1 + a2^2*c1 - b1^2*c1 + b1*c1^2 + b1*c2^2 - b2^2*c1)/(2*(-a1*b2 + a1*c2 + a2*b1 - a2*c1 - b1*c2 + b2*c1))
Ce=p+1i*q
r=abs(Ce-a)
c(Center=Ce,Radius=r)
}
abs(sum((tric(a,b,c)-tric(b,c,d))^2)) < tol # all(tric(a,b,c)==tric(b,c,d))
}

> is.oncircle(1+0i,1i,cos(1)+1i*sin(1),cos(2)+1i*sin(2))
[1] TRUE
594132人目の素数さん
2024/04/27(土) 16:01:22.63ID:GL0yN7Jn
今日の積分

lim[n→∞] ∫[0,1] xsin(nx)/(1+x) dx
595132人目の素数さん
2024/04/27(土) 17:29:33.10ID:Ufg79bKJ
I[n] = ∫[0,1] xsin(nx)/(1+x) dx
= ∫[0,1] -(1/n)cos(nx)'{x/(1+x)} dx
= -cos(nx)/(2n) + (1/n)∫[0,1] cos(nx)/(1+x)^2 dx
|I[n]|≦1/(2n) + (1/n)∫[0,1] |cos(nx)/(1+x)^2| dx
≦1/(2n) + (1/n)∫[0,1] 1/(1+x)^2 dx
=1/(2n) + (1/n)log(2)
→0 (n→∞)
596132人目の素数さん
2024/04/27(土) 17:34:03.97ID:Ufg79bKJ
>595
誤= -cos(nx)/(2n) + (1/n)∫[0,1] cos(nx)/(1+x)^2 dx
正= -cos(n)/(2n) + (1/n)∫[0,1] cos(nx)/(1+x)^2 dx

誤=1/(2n) + (1/n)log(2)
正=1/(2n) + 1/(2n)
597132人目の素数さん
2024/04/27(土) 17:47:08.08ID:Ufg79bKJ
参考:
リーマン・ルベーグの補題
https://ja.wikipedia.org/wiki/%E3%83%AA%E3%83%BC%E3%83%9E%E3%83%B3%E3%83%BB%E3%83%AB%E3%83%99%E3%83%BC%E3%82%B0%E3%81%AE%E8%A3%9C%E9%A1%8C
598132人目の素数さん
2024/04/27(土) 19:38:23.01ID:4scXhwOO
>>576
辺の長さは1でなくてもいいな。
599132人目の素数さん
2024/04/28(日) 00:16:17.55ID:dCSp4kxv
>>470-471
「はなはだ技巧的」な別解
f(t)=∫[t,∞] 2(sin((x-t)/2)/x)^2 dx
g(t)=∫[0,∞] e^(-tx)/(1+x^2) dx
とするとf(t),g(t)はともに微分方程式 y''+y=1/t を満たすので
f(t)-g(t)は y''+y=0 の解でlim[n→∞](f(t)-g(t))=0よりf(t)-g(t)=0
f(t),g(t)はt≧0で一様収束で連続より
∫[0,∞] (sin(x)/x)^2 dx=f(0)=g(0)=∫[0,∞] 1/(1+x^2) dx=π/2
600132人目の素数さん
2024/04/28(日) 02:57:16.61ID:D0y7o8h6
 f(x) > 0,
 f '(x) は単調に変化する
とする。
J[m] = ∫[0,1] f(x) sin(2mπx) dx
  = Σ[k=1,m] ∫[(k-1)/m, k/m] f(x) sin(2mπx) dx
  = (1/2mπ)Σ[k=1,m] ∫[0, 2π] f((k-1)/m + y/mπ) sin(y) dy
  = (1/2mπ)Σ[k=1,m] 2{f(α)-f(β)}∫[0,y] sin(y)dy
             (k-1)/m < α < (k-1/2)/m < β < k/m,
  = (1/2mπ)Σ[k=1,m] 2{f(α)-[f(β)}
  = (1/mπ)Σ[k=1,m] (β-α) f '(γ)
  < (1/mπ)(1/m)Σ[k=1,m] f '(γ)
  < (1/mπ) |∫[0,1] f '(x) dx|
  = (1/mπ) |f(1)-f(0)|,
601132人目の素数さん
2024/04/28(日) 04:57:09.51ID:vCs2q47g
小学生レベルらしいんだが全く解けん。難問すぎんだろこれ誰か解いてくれよ
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
602132人目の素数さん
2024/04/28(日) 06:07:05.51ID:zeEF4QcU
朝飯前の問題

一辺の長さが1の正7角形の周上に3頂点A,B,Cを持つ三角形ABCを考える。
三角形ABCが正三角形を形成できるならばその面積を求めよ。
参考画像 高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
603132人目の素数さん
2024/04/28(日) 06:09:21.14ID:zeEF4QcU
他人を蔑むのに統失という語を使うPhimoseくんが東大合格者だと思うひとは
その旨とその理由を投稿してください。
Phimoseは東大合格通知の書式すらしらなかったので東大非合格者であると推定されている。
まあ、記憶力が極めて悪いというのは考えうるが。
604132人目の素数さん
2024/04/28(日) 06:13:18.84ID:pfxD2O3Q
>>601
80
605132人目の素数さん
2024/04/28(日) 06:29:14.90ID:pfxD2O3Q
>>601
9という数値は不要。
606132人目の素数さん
2024/04/28(日) 06:38:07.39ID:pfxD2O3Q
>>601
9の長さをx (x>8)とすると
平行四辺形の面積=直角三角形の面積+台形の面積は
8*√(x^2-8^2)/2 + (10+(10-√(x^2-8^2)))*8/2=80
直角三角形を回転させれば斜め方向の平行線の距離が8なので
8*10=80とだせる。
607132人目の素数さん
2024/04/28(日) 07:14:40.34ID:J7CuxUey
>>603
お前が東大合格者じゃないということはわかるな
邪魔だから消えろ
608132人目の素数さん
2024/04/28(日) 07:45:37.46ID:JfpAkSXP
>>603
書き込み内容が完全に統失だから当たり前だろ
さっさとお薬飲めよ
609132人目の素数さん
2024/04/28(日) 08:50:21.02ID:pfxD2O3Q
>>607
東大合格通知は葉書大で公印すら押してなかったな。
あんたは見たこともないんだろうな。
東大非合格者であることが確定しました。
610132人目の素数さん
2024/04/28(日) 08:53:07.89ID:pfxD2O3Q
>>602
Wolfram言語による解
Clear[fn]
n=7
fn[a_] := (
p=Table[Cos[t*2Pi/n]+I*Sin[t*2Pi/n],{t,n+1}];
t0=2Pi/n;
t2i[t_] := (
i=Mod[Floor[t/t0],n];
j=i+1;
i=If[i!=0,i,n];
line1={{0,0},{Cos[t],Sin[t]}};
line2={{Re[p[[i]]],Im[p[[i]]]},{Re[p[[j]]],Im[p[[j]]]}};
ResourceFunction["LineIntersection"][line1,line2]
);
ABC=Map[t2i,{a,a+2Pi/3,a+2Pi/3+2Pi/3}];
AB=EuclideanDistance[ABC[[1]],ABC[[2]]];
BC=EuclideanDistance[ABC[[2]],ABC[[3]]];
CA=EuclideanDistance[ABC[[3]],ABC[[1]]];
(AB-BC)^2+(BC-CA)^2+(CA-AB)^2)

Minimize[{fn,0<a && a<2Pi/n},a]
611132人目の素数さん
2024/04/28(日) 09:15:26.13ID:tkcBhod4
>>609
スレチだからうせろってことなんだけど
空気読めないね
いい加減ウザい
612132人目の素数さん
2024/04/28(日) 09:17:20.33ID:pfxD2O3Q
>>610
R言語による解

intsect = \(a,b,c,d){
a1=Re(a) ; a2=Im(a)
b1=Re(b) ; b2=Im(b)
c1=Re(c) ; c2=Im(c)
d1=Re(d) ; d2=Im(d)

if((a2-b2)*(c1-d1)==(a1-b1)*(c2-d2) | (a-b)*(c-d)==0) return(NULL)
if(a1==b1 & c1!=d1) return( a1+1i*((d2-c2)/(d1-c1)*(a1-c1)+c2) )
if(a1!=b1 & c1==d1) return( c1+1i*((a2-b2)/(a1-b1)*(c1-a1)+a2) )

p=(a2-b2)/(a1-b1)
q=(c2-d2)/(c1-d1)

x= ((p*a1 - a2) - (q*c1 - c2))/ (p-q)
y= p*x - (p*a1 - a2)
return( x + 1i*y )
}

N <- 7
theta2int=\(theta,n=N){ # theta 2 intersection
p=NULL
p[1:(n+1)]=exp(1i*2*pi/n*(1:(n+1)))
i=floor(theta/((2*pi)/n)) %% n
j=i+1
i=ifelse(i,i,n) # ifelse(i!=0,i,n)
intsect(0i,exp(1i*theta),p[i],p[j])
}
fn=\(a){
b=a+2*pi/3 ; c=b+2*pi/3
A=theta2int(a) ; B=theta2int(b) ; C=theta2int(c)
AB=abs(A-B) ; BC=abs(B-C) ; CA=abs(C-A)
(AB-BC)^2+(BC-CA)^2+(CA-AB)^2
}
fn=Vectorize(fn)
curve(fn(x),0,2*pi/N)
opt=optimize(fn,c(0,2*pi/N),tol=1e-16) ; opt
optimize(fn,c(0,0.3),tol=1e-16)$obj
optimize(fn,c(0.3,0.6),tol=1e-16)$obj
optimize(fn,c(0.6,0.9),tol=1e-16)$obj

9角形だとN=9にするだけ。
613132人目の素数さん
2024/04/28(日) 09:58:45.97ID:yx/ToBEB
◆図形を平行四辺形とする
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚


直角三角形の短辺の長さxは、
9^2-8^2=81-64=17 なので、x=√17

直角三角形の面積s1は、 s1=4x

台形の短辺の長さyは、y=10-x
台形の長辺の長さは10

台形の面積s2は
s2=8(y+10)/2=8(20-x)/2=80-4x


したがって図形の面積s3は、

∴s3=s1+s2=4x+(80-4x)=80
614132人目の素数さん
2024/04/28(日) 10:00:45.11ID:Q7sMPCNd
>>609
アンタはみたことないん"だろう"な
推測だけで確定とか言ってるの?数学板で?w
つくづくアホだね、そんなやつが東大だのなんだのほざいてるとかw
615132人目の素数さん
2024/04/28(日) 10:03:20.62ID:JfpAkSXP
尿瓶ジジイID:pfxD2O3Qは日本語も空気も理解できないチンパンってことだけは誰の目から見てもハッキリしてるみたいだねw
616132人目の素数さん
2024/04/28(日) 10:05:34.46ID:yx/ToBEB
>>610>>612
面積が出力されていない
617132人目の素数さん
2024/04/28(日) 10:12:36.18ID:7ZCPRfd4
面積以前の話
618132人目の素数さん
2024/04/28(日) 10:18:41.25ID:Q7sMPCNd
スレチという概念が理解できずに妄言を垂れ流す尿瓶ジジイマジで救いようないな
619132人目の素数さん
2024/04/28(日) 10:50:23.56ID:pfxD2O3Q
>>616
3辺の差の二乗和の最低値が0を超えるから
該当する三角形は存在しないことが示されている。
>602に示した図は実は正三角形になっていない。
620132人目の素数さん
2024/04/28(日) 10:54:13.96ID:7ZCPRfd4
まぁ周上自由にとれるなら存在はするが尿瓶の方法では無理
621132人目の素数さん
2024/04/28(日) 11:06:15.49ID:pfxD2O3Q
>>620
では、Phimoseくんの模範解答を希望します。
622132人目の素数さん
2024/04/28(日) 11:09:14.63ID:pfxD2O3Q
正三角形の重心が正7角形の重心と一致するという前提が崩れれば
正三角形ができるかもしれん。
623132人目の素数さん
2024/04/28(日) 11:09:39.63ID:Q7sMPCNd
自分が気に食わないレスは全員同じに見える病気治るどころかますます悪化してるみたいだね
624132人目の素数さん
2024/04/28(日) 11:10:34.96ID:7ZCPRfd4
そもそも数学の問題にすらなっていない
お前に数学の問題文作れる知能はない
625132人目の素数さん
2024/04/28(日) 11:12:01.66ID:JfpAkSXP
>>624
尿瓶ジジイは日本語すら通じないんだから当たり前だよなww
626132人目の素数さん
2024/04/28(日) 11:22:59.72ID:7ZCPRfd4
辺l,m,n上の点X,Y,ZでOからの距離が一致するなら3点のargument x,y,z は ±x ≡ ±y ≡ ±z (mod 2π/7) を満たす必要があるから解なし
そもそもこんなもんもっと簡単に見つかるしな
627132人目の素数さん
2024/04/28(日) 11:42:32.22ID:pfxD2O3Q
内接する正三角形の中心*が正七角形の中心+と一致するという前提を外してR言語で探索して作図。

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
正七角形の1辺の長さが1とすると正三角形の1辺の長さは約1.87になった。

東大合格者による検証を希望します。
628132人目の素数さん
2024/04/28(日) 11:43:39.06ID:pfxD2O3Q
助言よりも罵倒を生き甲斐にしているのが、Phimoseくんらの集団
愛用の文字はw。
嵌頓したforeskinの形状を象徴している。
629132人目の素数さん
2024/04/28(日) 11:49:18.46ID:7ZCPRfd4
そして前提外して相変わらずアホな方法で探してるんやろなwww
630132人目の素数さん
2024/04/28(日) 11:55:48.11ID:D0y7o8h6
>>622
 重心が一致するならば 正三角形はできない。

(略証)
重心が一致する正三角形では、3頂点と中心の距離は等しい。
正7角形の辺上の点でこの条件を満たす2点の方位を α, β とおく。
 β = 2kπ/7±α, (kは整数)
β-α = 2kπ/7 (≠2π/3) のとき、正三角形はできない。
よって α+β = 2kπ/7 に限る。
同様にして β+γ = 2Lπ/7, (Lは整数)
∴ γ-α = 2(L-k)π/7 ≠ 2π/3 なので正三角形はできない。(終)
631132人目の素数さん
2024/04/28(日) 11:58:44.42ID:JfpAkSXP
>>628
助言?妄言の間違いだし罵倒が生き甲斐なのはアンタだろw
632132人目の素数さん
2024/04/28(日) 12:00:26.25ID:Q7sMPCNd
軍団w
スレ住民全員に煙たがられてる事実を直視できない模様
633630
2024/04/28(日) 12:01:23.28ID:D0y7o8h6
>>626 にありましたね。スマン
634132人目の素数さん
2024/04/28(日) 12:08:28.19ID:5axyy40f
今日の積分
lim[n→∞] ∫[0,n] xcos(nπx)/(1+x) dx
635132人目の素数さん
2024/04/28(日) 12:18:12.60ID:pfxD2O3Q
>>624
俺が出した問題にコメントしているのに、数学の問題でないという矛盾。
こういう自家撞着に気付かないのが東大合格者だと思う人はその旨を投稿してください。
636132人目の素数さん
2024/04/28(日) 12:27:56.90ID:pfxD2O3Q
>>629
アホな方法をWolframに移植。

n=7
fn[a_,b_,c_] := (
p=Table[Cos[t*2Pi/n]+I*Sin[t*2Pi/n],{t,n+1}];
t0=2Pi/n;
t2i[t_] := (
i=Mod[Floor[t/t0],n];
j=i+1;
i=If[i!=0,i,n];
line1={{0,0},{Cos[t],Sin[t]}};
line2={{Re[p[[i]]],Im[p[[i]]]},{Re[p[[j]]],Im[p[[j]]]}};
ResourceFunction["LineIntersection"][line1,line2]
);
ABC=Map[t2i,{a,b,c}];
AB=EuclideanDistance[ABC[[1]],ABC[[2]]];
BC=EuclideanDistance[ABC[[2]],ABC[[3]]];
CA=EuclideanDistance[ABC[[3]],ABC[[1]]];
(AB-BC)^2+(BC-CA)^2+(CA-AB)^2)

Minimize[{fn,a!=b && b!=c && c!=a && -Pi<a && a<Pi/n && -Pi<b && b<Pi/n && -Pi<c && c<Pi/n},{a,b,c}]

Rのoptim関数より精度が悪くなった。
Wolfram使いの改善を希望します。
637132人目の素数さん
2024/04/28(日) 12:35:54.82ID:7ZCPRfd4
やっぱりwwwwwwwwwwwwwww
638132人目の素数さん
2024/04/28(日) 12:38:36.55ID:7ZCPRfd4
>>635
お前の知能で理解できるわけないやろアホ~wwww
お前以外全員わかってるわwwwww
恥知らず乙
wwwwwwwwwwwwwwwwwwwww
639132人目の素数さん
2024/04/28(日) 12:42:59.11ID:Q7sMPCNd
>>636
チンパン数学垂れ流して煙たがられて発狂かよ
いつになったら懲りるんだろうねw
640132人目の素数さん
2024/04/28(日) 13:21:34.66ID:5axyy40f
今日の積分発展問題

I_c = lim[n→∞] ∫[0,n] xcos(nπx)/(1+x) dx
I_s = lim[n→∞] ∫[0,n] xsin(nπx)/(1+x) dx

に対して、
I_cとI_sは等しいかどうか調べよ。
641132人目の素数さん
2024/04/28(日) 13:33:53.86ID:D0y7o8h6
単位円に内接する正7角形をとり、頂点の座標を
 P_k (cos(2kπ/7), sin(2kπ/7))
とする。
 P_0 (1, 0)
 A (x, y)
 B (x, -y)
が正3角形になるとき
 (1-x)/y = tan(π/3) = √3,
また線分 P_2・P_3 上にあることから
 x = -{(√3)cos(π/7)-sin(2π/7)}/{2cos(2π/7-π/6)}
  = -0.4182588529921
 y = {cos(π/7)+cos(2π/7)}/{2cos(2π/7-π/6)}
  = 0.818832130555563
642132人目の素数さん
2024/04/28(日) 14:09:26.96ID:EVdNjhUH
今日の積分(Twitterより)

ab>0とする。
∫[a,b] cos(x-(ab/x)) dx
を求めよ。
643132人目の素数さん
2024/04/28(日) 14:17:23.09ID:D0y7o8h6
y = (1+cos(π/7))(2cos(π/7)-1)/{2cos(2π/7-π/6)}
より
面積S = (1-x)y = (√3)yy = 1.161315918275
644イナ ◆/7jUdUKiSM
2024/04/28(日) 15:27:43.31ID:7m3jdPiT
>>567
>>592________/15.39968……
5844277)90000000
_______/5844277
_______/31557230
_______/29221358
________/23358450
________/17532831
_________/5825619
_________/52598493
__________/5657697
__________/52598493
___________/3978477
___________/35065662
____________/4719108
∴15.39968mol
645132人目の素数さん
2024/04/28(日) 15:50:07.97ID:D0y7o8h6
>>642
 sin(b-a)
646132人目の素数さん
2024/04/28(日) 15:56:24.82ID:DilOgePT
すべての実数xについて、-2x²+ax-1<0が成り立つような定数aの値を求めよ
647132人目の素数さん
2024/04/28(日) 15:59:40.89ID:Q7sMPCNd
尿瓶チンパンジジイけちょんけちょんにされてダンマリw
648132人目の素数さん
2024/04/28(日) 16:39:05.30ID:D0y7o8h6
>>646
(与式) = -2(x - a/4)^2 + (aa/8 - 1) ≦ aa/8 - 1,
題意より
 最大値 (aa/8 - 1) < 0,
∴ |a| < 2√2.
649132人目の素数さん
2024/04/28(日) 16:45:56.87ID:DilOgePT
正解です
650132人目の素数さん
2024/04/28(日) 17:18:11.11ID:dCSp4kxv
>>642
I = ∫[a,b] cos(x-(ab/x)) dx (置換t=ab/x)
= ∫[a,b] cos((ab/t)-t)(ab/t^2) dt
(第一式+第二式)/2
I = (1/2)∫[a,b] cos(x-(ab/x))(1+(ab/x^2)) dx (置換t=x-ab/x)
= (1/2)∫[a-b,b-a] cos(t) dt
= sin(b-a)
651645
2024/04/28(日) 17:20:17.07ID:D0y7o8h6
>>642
x = ab/t とおくと
 (与式) = ∫[a,b] cos(ab/t-t) (ab/tt)dt,
これらを相加平均して
 (与式) = (1/2)∫[a,b] cos(x-ab/x) (1+ab/xx)dx
    = (1/2)∫[a,b] cos(x-ab/x) (x-ab/x)' dx
    = [ (1/2)sin(x-ab/x) ](x:a→b)
    = sin(b-a),
652132人目の素数さん
2024/04/28(日) 19:23:57.17ID:1DJVcSHl
高校数学の質問スレと高校数学の出題スレは分けた方がいいだろう
653132人目の素数さん
2024/04/28(日) 19:32:59.98ID:8TDn0hh7
質問と出題を混同してるバカが発狂しまくってるからな
でも日本語理解できないから無駄かも
654132人目の素数さん
2024/04/28(日) 19:47:50.24ID:pfxD2O3Q
Rで作図

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

Wolframで計算

n=7
r=Cos[2Pi/n] + I*Sin[2Pi/n]
p=Table[(1-r^i)/(1-r),{i,1,n+1}]
a={1/2,0}
a0={0,-1/2*Tan[Pi/3]}
aa0={a,a0}
p2={Re[p[[2]]],Im[p[[2]]]}
p3={Re[p[[3]]],Im[p[[3]]]}
p2p3={p2,p3}
b=ResourceFunction["LineIntersection"][aa0,p2p3]
EuclideanDistance[a,b]
% // N


In[36]:= % // N

Out[36]= 1.86614

R言語でNelder-Mead法での値とほぼ同じ。
655132人目の素数さん
2024/04/28(日) 20:05:21.33ID:rhhRBUEz
a,bを動かせば、
(0,0),(a,1),(b,1)を頂点とする三角形はup to 相似で任意の形状をつくれると思うのですが
妥当でしょうか。
656132人目の素数さん
2024/04/28(日) 20:06:07.08ID:pfxD2O3Q
3辺が等しいことを確認。

n=7;
r=Cos[2Pi/n] + I*Sin[2Pi/n];
p=Table[(1-r^i)/(1-r),{i,1,n+1}];
a={1/2,0};
a0={0,-1/2*Tan[Pi/3]};
aa0={a,a0};
p2={Re[p[[2]]],Im[p[[2]]]};
p3={Re[p[[3]]],Im[p[[3]]]};
p2p3={p2,p3};
b=ResourceFunction["LineIntersection"][aa0,p2p3];
a1={0,-1/2*Tan[2Pi/3]};
aa1={a,a1};
p5={Re[p[[5]]],Im[p[[5]]]};
p6={Re[p[[6]]],Im[p[[6]]]};
p5p6={p5,p6};
c=ResourceFunction["LineIntersection"][aa1,p5p6];
EuclideanDistance[a,b] // N
EuclideanDistance[b,c] // N
EuclideanDistance[c,a] // N



In[17]:= EuclideanDistance[a,b] // N

Out[17]= 1.86614

In[18]:= EuclideanDistance[b,c] // N

N::meprec: Internal precision limit $MaxExtraPrecision = 50. reached while evaluating <<1>>.

Out[18]= 1.86614

In[19]:= EuclideanDistance[c,a] // N

Out[19]= 1.86614
657132人目の素数さん
2024/04/28(日) 20:14:14.91ID:7ZCPRfd4
>>655
妥当
658132人目の素数さん
2024/04/28(日) 20:14:35.07ID:pfxD2O3Q
>>655
簡略化のため
C(0,1)
A(a,0)
B(b,0)
で考える
で∠CAB、∠CBAが任意にとれるから
任意の形状が作れると思う。
659132人目の素数さん
2024/04/28(日) 20:27:44.62ID:pfxD2O3Q
>>644
((1000*1000/1.009)*(0.9/100)) / 58.44277 = 152.6232 mol
660132人目の素数さん
2024/04/28(日) 21:34:27.15ID:pfxD2O3Q
>>656
重心間の距離 
> abs(mean(p[-1]) - mean(c(A,B,C)))
[1] 0.03915394
661イナ ◆/7jUdUKiSM
2024/04/28(日) 22:04:13.84ID:7m3jdPiT
>>644
>>602
△ABCが正三角形であるとして点A(0,1)
点Bを第3象限に、点Cを第4象限に、
BCがx軸と平行になるようにとると、
直線y=1+x√3と、
点Bがある第3象限にある正七角形の辺の方程式、
y+sin(π/14)={-cos(π/7)+sin(π/14)}/{-sin(π/7)+cos(π/14)}{x+cos(π/14)}
の連立方程式を解いて、
x=(cos(π/14)-sin(π/7)+cos(π/7)cos(π/14)-sin(π/7)sin(π/14))/(sin(π/14)+sin(π/7)√3-cos(π/7)-cos(π/14)√3)
≒1.32287565553/(-1.61556393083)
△ABC=x^2√3≒1.16131591827
662132人目の素数さん
2024/04/28(日) 22:26:32.72ID:D0y7o8h6
半径Rの円に内接する正7角形をとり、頂点の座標を
 P_k (R・cos(2kπ/7), R・sin(2kπ/7))
とする。
 A (-R・cos(π/7), 0)
 B (x, y)
 C (x, -y)
が正3角形になるとき
 {x + R・cos(π/7)}/y = tan(π/3) = √3,
また線分 P_1・P_2 上にあることから
 {R・sin(4π/7)-y}/{R・cos(4π/7)-x} = {y-R・sin(2π/7)}/{x-R・cos(2π/7)},
∴ cos(3π/7)・x + sin(3π/7)・y = R・cos(π/7),
これらより
 x = R・cos(π/7){√3-sin(3π/7)}/{2sin(3π/7+π/3)}
  = 0.5014492055 R,
 y = R・cos(π/7){1+cos(3π/7)}/{2cos(3π/7+π/3)}
  = 0.8096864522 R,

(辺長) = 2・y = 1.6193729044 R = 1.86613689152…

注) 一辺の長さが l の正7角形の場合
 R = l/{2sin(π/7)} = 1.15238243548… l
663132人目の素数さん
2024/04/28(日) 23:17:21.47ID:7ZCPRfd4
周上にPをとる
P中心にπ/6回す
元の7角形との交点Q
PQの長さ求めよ?
アホか
664132人目の素数さん
2024/04/29(月) 00:07:52.16ID:5vT8NWG7
663:132人目の素数さん:[sage]:2024/04/28(日) 23:17:21.47 ID:7ZCPRfd4
周上にPをとる
P中心にπ/3回す
元の7角形との交点Q
PQの長さ求めよ?
アホか
もしPQがPの選択によらない定数ならその長さの線分を7角形の内側で滑らせたRの軌跡が直線上を走る事になる
665132人目の素数さん
2024/04/29(月) 02:15:43.93ID:a8YGSOSe
>>655
 △DEF の3つの頂角で最大のものを F とする: D, E ≦ F
∴ D, E < 90°    (D+E+F=180°)
 a =-1/tan(D), b = 1/tan(E),
とおけば
 ∠A = ∠D,
 ∠B = ∠E,
⊿の内角の和は180° だから
 ∠C = ∠F,
三角相等により ⊿ABC ∽ ⊿DEF
666132人目の素数さん
2024/04/29(月) 07:29:59.59ID:IbNZs8hI
本日の演習問題

  単位円に内接する正7角形に内接する正方形の面積を求めよ。

参考画像 高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
667132人目の素数さん
2024/04/29(月) 07:35:00.32ID:+/rWP4aL
本日の〇〇って書き込む奴、スレの趣旨を理解できないんだろうか
668132人目の素数さん
2024/04/29(月) 07:47:51.75ID:IbNZs8hI
>>666
追加の参考画像

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
669132人目の素数さん
2024/04/29(月) 07:50:58.96ID:IbNZs8hI
>>667
俺が出した内接正三角形を求める出題は東大合格者をはじめに取り組む人が複数いた。
罵倒厨(別称:自演認定厨、愛称:Phimoseくん)もレスをつけていた。
670132人目の素数さん
2024/04/29(月) 07:58:57.43ID:n9+Gv/1q
>>669
取り組む人がいるのとスレの趣旨の話は別の話だろ
都内の路上は歩行喫煙が禁じられているのに吸ってる人は何人もいる
>俺が出した内接正三角形を求める出題は東大合格者をはじめに取り組む人が複数いた。
×はじめに
〇はじめ
日本語を理解できないんだな
671132人目の素数さん
2024/04/29(月) 08:13:37.55ID:IbNZs8hI
またまた、罵倒厨(別称:自演認定厨、愛称:Phimoseくん)が出現。
脳内変換できなのは欠陥があるんだろうね。
他スレでの誤入力のコピペを繰り返して悦にいっているPhimoseくんが東大合格者だと思う人は
その旨と根拠を投稿してください。

東大合格通知の書式すら知らなかったのでPhimoseくんは非合格であると推定。
672132人目の素数さん
2024/04/29(月) 08:44:32.84ID:tieahtLq
>>671
「あなた」がスレの趣旨をどう捉えているかって話であって、
誤字の話はおまけでしかないよ
レスを見るに何度も誤字脱字の指摘を受けてるようだけど、
脳内変換できなのは、とまた脱字
何度言われても直せないことこそ欠陥ではないの?
俺は東大合格どころかこの春から高校通い始めた生徒だよ
質問しようとしたらそういう雰囲気じゃないからしばらく様子見てたけど、
あんまりなんでレスしたまで
673132人目の素数さん
2024/04/29(月) 09:04:18.42ID:5YDPWT7N
質問すればいいだけじゃねぇの。
674132人目の素数さん
2024/04/29(月) 09:31:07.93ID:n/BWlf8C
>>669
ここは出題スレじゃなくて質問スレな
日本語不自由な人なのかな?それとも、精神疾患持ち?
675132人目の素数さん
2024/04/29(月) 09:33:52.29ID:o0a3kWmy
>>671
とりあえずお前が来るとスレが荒れるから
消えてマジで
他に生き甲斐無いの?
676132人目の素数さん
2024/04/29(月) 09:50:32.74ID:f/66fJc7
a,b,cが0以上1以下の実数を動くとき
点(a+b+c,abc)の存在する領域を求めよ。という問題を教えてください。

(a+b,ab)なら、2次方程式の解の範囲を考えて解けたのですが。
677132人目の素数さん
2024/04/29(月) 10:04:04.25ID:RTjy+j5k
>>674
医者板でも長年発狂してる統失です
678132人目の素数さん
2024/04/29(月) 10:07:08.58ID:yQo9uD3i
>>671
どこに東大合格者()がいたんだよ?
まさか例のコテハン?いつ名乗ったんだよ、その根拠は?
どうせアンタがそう信じたいだけだろw

少なくともアンタみたいな日本語通じないアホが東大だなんだ言ってるのが本当に滑稽でw
679132人目の素数さん
2024/04/29(月) 11:00:48.33ID:amlR4Bm9
∀p,q ∃t y = x^3 - px^2 -q = tx has three real roots
680132人目の素数さん
2024/04/29(月) 12:28:59.43ID:uR7tkSNS
今日の積分発展問題

I_c = lim[n→∞] ∫[0,n] xcos(nπx)/(1+x) dx
I_s = lim[n→∞] ∫[0,n] xsin(nπx)/(1+x) dx

に対して、
I_cとI_sは等しいかどうか調べよ。
681132人目の素数さん
2024/04/29(月) 12:29:15.75ID:a8YGSOSe
問題は >>676 のとおり。

 a+b+c = s,
 abc = u,
とおくと
 0 ≦ u ≦ (s/3)^3,   (0≦s≦2)
 s-2 ≦ u ≦ (s/3)^3,  (2≦s≦3)
682132人目の素数さん
2024/04/29(月) 13:19:41.15ID:+M5vJLOr
2次方程式x²-mx+12 = 0の1つの解が他の解の3倍であるとき、定数mを求めよ
683132人目の素数さん
2024/04/29(月) 13:35:17.84ID:jSizIymp
ゲームの話ですが
武器のレベルを上げるためにアイテムを1つ使用します
その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています
レベル10まで到達するために必要なアイテムの数の平均値はどうすれば計算できますか?
684132人目の素数さん
2024/04/29(月) 13:52:13.76ID:a8YGSOSe
頂点A=Po のとき >>641, 643
 (辺長) = 2y = 1.6376642611111 R
    = 1.88721552972
 S = (R-x)y = (√3)yy = 1.16131591827 RR
  = 1.54221044212

頂点A が P3-P4 の中点のとき >>662
 (辺長) = 2y = 1.6193729044 R = 1.86613689152
               分母は sin(…) でした。スマソ
 S = (R・cos(π/7)+x)y = (√3)yy = 1.13551891435 RR
  = 1.5079524007

注) 辺長がlの正7角形の場合
 R = l/{2sin(π/7)} = 1.15238243548 l,
685132人目の素数さん
2024/04/29(月) 13:56:57.95ID:amlR4Bm9
n 回目にレベルkになる確率p[k,n]の漸化式を立ててp[10,k]を計算
Σ[k](1-p[10,k])
が答え
686132人目の素数さん
2024/04/29(月) 14:09:10.40ID:a8YGSOSe
>>682
他の解をaとおくと 一つの解は 3a,
 (x-a)(x-3a) = xx -4ax + 3aa,
∴ 3aa = 12, a = ±2,
  m = 4a = ±8,
687132人目の素数さん
2024/04/29(月) 14:22:13.09ID:PmRsUfkf
>>683

アイテムの価値を1、レベル0の価値をv[0]、レベル1の価値をv[1]、...、レベル10の価値をv[10]と仮定。
レベルkの武器に、アイテム1個を使ってレベルが上がる確率がpk、下がる確率がqk、
維持の確率が(1-pk-qk)だとすると、次の式が成立すると考えます。

v[k] + 1 = pk*v[k+1] + qk*v[k-1] + (1-pk-qk)*v[k]

価値v[k]の武器に、アイテム一個をつかうと、確率pkでレベルk+1の武器に、
確率qkでレベルk-1の武器に、確率(1-pk-qk)で変化無しという意味です。

k=0からk=9まで10個の式が作れ、変数はv[0]からv[10]まで11個あります。

この連立方程式を解いて、v[10]-v[0] の値が、レベル10の武器を作るまでに
必要なアイテムの数の平均値と考えられます。
688イナ ◆/7jUdUKiSM
2024/04/29(月) 15:26:02.38ID:XqbUyNt3
>>661
>>666
正方形の面積は{2sin(π/7)}^2より大きく、
{2cos(π/7)}^2より小さい。
作図より1.3^2=1.69ぐらい。
ほとんど同じ面積になりそうな長方形は、
2sin(π/7)・2cos(π/14)=1.69202147163……
689132人目の素数さん
2024/04/29(月) 17:06:23.75ID:jSizIymp
>>685
>>687
ありがとうございます
理解に努めます
690132人目の素数さん
2024/04/29(月) 19:22:06.28ID:a8YGSOSe
正方形の4頂点を
 (x+y, y) (x-y, y) (x-y, -y) (x+y, -y)
とおく。

 (x+y, y) が辺 P1-P2 上にある:
 (R・sin(4π/7)-y)/(R・cos(4π/7)-x-y) = (y-R・sin(2π/7))/(x+y-R・cos(2π/7)),
∴ cos(3π/7)(x+y) + sin(3π/7)・y = R・cos(π/7),

 (x-y, y) が辺 P2-P3 上にある:
 (R・sin(6π/7)-y)/(R・cos(6π/7)-x+y) = (y-R・sin(4π/7))/(x-y-R・cos(4π/7)),
∴ cos(5π/7)(x-y) + sin(5π/7)・y = R・cos(π/7),

x を消去して y を求める。
 y = R・[cos(π/7)+cos(2π/7)]/[cos(π/7)-cos(2π/7)+sin(2π/7)]
  = 0.719552293661 R,

∴ S = (2y)^2 = 1.35852945988622
691690
2024/04/29(月) 19:26:18.60ID:a8YGSOSe
↑ S = (2y)^2 = 2.07102201325 RR,
692132人目の素数さん
2024/04/29(月) 20:43:17.87ID:a8YGSOSe
Rの円内にあるのに 2RRを超えるのは不合理。

∴ (x+y, y) は辺 Po-P1 上にある:
 (R・sin(2π/7)-y)/(R・cos(2π/7)-x-y) = y/(x+y-R),

∴ cos(π/7)(x+y) + sin(π/7)・y = R・cos(π/7),
これと
  cos(5π/7)(x-y) + sin(5π/7)・y = R・cos(π/7),
から xを消去して
 y = 2cos(π/7)sin(2π/7)sin(3π/7)/{cos(π/7)+cos(3π/7)+sin(3π/7)}
 = 0.65453593566 R,

辺長 = 2y =1.30907187132 R,
 
面積 S = (2y)^2 = 1.7136691642655 RR,

中心間の距離 x = 0.030256170633 R,
693690
2024/04/30(火) 00:44:32.66ID:ElCKljKY
>>690
 頂点 (x+y, y) は辺 P1-P2 上にある、と勘違いしてました。
それだと 頂点P1より右側になり、円外にハミ出してしまいますね。

>>666, >>668 の画像を見れば、
 □の頂点が Po-P1 上に来ることは分かったはずですが…

>>688
 かなり良い近似ですね。
694132人目の素数さん
2024/04/30(火) 07:24:35.36ID:VcpWQbIP
>>693
私の出題へのレスありがとうございます。

プログラムによる数値解

変数4つでもRでNelder-Meadは近似値を返してくるが、そのコードをWolframに移植すると期待外れ。
今月からWolframScriptが無料と教わって今月からWolframを始めた初心者なので正しく移植されていないのかもしれない。
変数を2つに減らしてRでコードしてみた。最初から7角形の1辺の長さ1で計算。
p[7]-A : p[1]-Aの長さの比を s : (1-s)
p[2]-B : p[3]-Bの長さの比を t : (1-t)
として
四角形の∠Bが直角となるように直線を引いてp[4],p[5]を通る直線の交点をC、
四角形の∠Cが直角となるように直線を引いてp[5],p[6]を通る直線の交点をD
とする。
作図過程
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
s=t=0.5で中点を選んだ場合
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

四角形の辺の長さの差の二乗和と対角線の長さの差の二乗和の総和を返す関数を f として
fが最低値(正確には極小値をとるs,tをNelder-Mead法で求める。
その結果
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚

戻し値は
[1] 9.745713e-17
浮動小数点数での計算値なので0と考えてよいと思う。


その諸元

$A
[1] 0.5921734-8.616568e-17i

$B
[1] 1.53274+1.179433i

$C
[1] 0.3533069+2.119999i

$D
[1] -0.5872596+0.9405664i

$side
[1] 1.508551
695132人目の素数さん
2024/04/30(火) 07:35:04.41ID:VcpWQbIP
>>694
(補足)
図の通り、1辺の長さ1の正7角形での計算です。
出題では
計算しやすいので単位円に内接する正7角形にしましたが
最初は1辺の長さ1の正7角形で考えておりました。
A,Bの偏角を変数にするのなら単位円内接の方が楽ですが。
まあ、プログラムに数値計算させるので対して手間は変わりませんが。

本来はWolfram言語の学習に自分に課した課題だってのですが、
WolframでNelder-Meadはどうもうまくコードできません。
jupyter経由でのWolram言語でサクサクと作図できないので
R言語でプログラムに戻った。

Wolram言語使える方の解法のレスを期待します。
696132人目の素数さん
2024/04/30(火) 07:38:58.88ID:VcpWQbIP
>>694
(補足)
辺1の場合で面積とs,tの値。
s+t=1が必然なのならば、変数を1つ減らすことができるのだが。

東大合格者の御見解を希望します。

$area
[1] 2.275727

$ΔG
[1] 0.1761126

$s
[1] 0.5921734

$t
[1] 0.4078266
697132人目の素数さん
2024/04/30(火) 07:39:35.76ID:rxxliZPS
出題云々のバカもスレチだしWolframの話題もスレチ
「高校数学」の「質問」スレだぞ
698132人目の素数さん
2024/04/30(火) 07:40:13.20ID:rxxliZPS
はい誘導
WolframAlphaを使いこなしてる人ってカッコイイ.....
http://2chb.net/r/math/1623024247/
699132人目の素数さん
2024/04/30(火) 08:07:24.42ID:d+6cGHAc
高校生にバカにされるのがそんなに楽しいのか尿瓶ジジイw
700132人目の素数さん
2024/04/30(火) 08:47:53.56ID:VcpWQbIP
>>696
それを前提にして計算

変数が一つにできればNewton-Raphsonが使えるので
横軸にs,縦軸に(AB-BC)^2+(AB-CD)^2+(AB-DA)^2+(BC-CD)^2+(BC-DA)^2+(CD-DA)^2+(AC-BD)^2 をおいて
グラフ化
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
最小値をとるsは1つだけのようなのでこれを
Newton-Raphson法(R言語ではuniroot関数)でもとめると
> opt=optimize(f,c(0,1),tol=1e-16) ; opt
$minimum
[1] 0.5921734

$objective
[1] 7.888609e-31
で 二変数でのNelder-Meadと同じ結果。

言語仕様や関数を検索しながらWolframに移植するのが次の課題。
701676
2024/04/30(火) 08:54:59.51ID:CMYzy4AG
>>681 様。

grapesで点をプロットすると確かに仰せのようになりますようです。
ありがとうございます。
できましたら >>681 の結果がどのように導けるのか
教えて頂けますでしょうか。
<(_ _)>
702132人目の素数さん
2024/04/30(火) 08:56:55.22ID:VcpWQbIP
俺の出題に取り組んでいる東大合格者と比べて
罵倒しかできないPhioseくんらの集団が東大合格者だと思う人は
その旨とその根拠を投稿してください。
703132人目の素数さん
2024/04/30(火) 09:00:51.60ID:VcpWQbIP
医学部だと統計から入ってRを使う人が多い(シリツ医は除く)が、
Pythonを使うひとも多いだろうな。
Wolfram言語は分数とか厳密値を返してくれるのが魅力ではある、
Rだと円を描くにも自作関数が必要。直線の交点の座標とか角度算出とか自分で作らなくちゃならん。
一度つくると再利用できる。
Wolframには幾多の関数が用意されている。
704132人目の素数さん
2024/04/30(火) 09:02:57.98ID:VcpWQbIP
>>698
WolframAlphaだと入力文字数制限があったり、タイムアウトするから
WolframScriptが使えた方がいいね。
705132人目の素数さん
2024/04/30(火) 09:14:44.22ID:VcpWQbIP
>>683
レベル0からは下がらないという設定でいいですか?
即ち、
レベル0でアイテムを1つ使用すると確率1でレベル1に上がるということで
いいでしょうか?
706132人目の素数さん
2024/04/30(火) 09:33:53.50ID:VcpWQbIP
具体的な問題は計算する意欲がわく。
具体的な問題なので具体的な数値の方が現実味が増すので
数値を設定して問題化。乱数発生させて確率を設定して具体化。

武器のレベルを上げるためにアイテムを1つ使用します
その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています。
その確率は、それぞれ 1.00 0.27 0.37 0.57 0.91 0.20 0.90 0.94 0.66 0.63とする。
レベル10まで到達するために必要なアイテムの数を item とする。
(1) itemの期待値を求めよ。
(2) itemの中央値を求めよ
(3) itemの分布は非対称である。itemの95%信頼区間(Highest Density Interval)を求めよ。
直感や御神託などあらゆるリソースを用いてよい。

確率は心の中にある、ゆえに期待値も心の中にある。
そして、ときに期待は裏切られる。

このシミュレーションをWolframScriptの次の課題にするかな。
707132人目の素数さん
2024/04/30(火) 10:08:11.53ID:1h+NNAq/
折れ線と直線の交点求めるだけのゴミみたいなテーマをいつまでもいつまでも引きずる無能
708132人目の素数さん
2024/04/30(火) 11:56:07.02ID:yB25sIh4
>>706
湧いてるのは頭だろw
709132人目の素数さん
2024/04/30(火) 12:26:23.58ID:U+kQ2foL
はい誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/

もうこのスレで出題するなよ
710132人目の素数さん
2024/04/30(火) 12:35:30.55ID:yB25sIh4
尿瓶ジジイってなんでここに固執してるの?
高校生相手にドヤりたいから?60の爺さんが?w
711132人目の素数さん
2024/04/30(火) 12:49:51.20ID:Xmn0sVPJ
今日の積分

I_c = lim[n→∞] ∫[0,n] xcos(nπx)/(1+x) dx
I_s = lim[n→∞] ∫[0,n] xsin(nπx)/(1+x) dx

に対して、
I_cとI_sは等しいかどうか調べよ。
712132人目の素数さん
2024/04/30(火) 12:51:43.57ID:VcpWQbIP
武器のレベルを上げるためにアイテムを1つ使用します
その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています。
レベルが高くなるほどレベルアップできるのが困難になるとする。
レベルL-1からLに上がる確率は1/Lと設定されているものとする。
レベル10まで到達するために必要なアイテムの数を item とする。
(1) itemの期待値を求めよ。
(2) itemの中央値を求めよ。

RやWolframのようなインタープリタ型の言語だと時間がかかりすぎて計算が困難。
Cの達人の登場を待ちます。
713692
2024/04/30(火) 14:06:32.35ID:ElCKljKY
正7角形の辺長が1のとき
 R = 1/{2sin(π/7)} = 1.15238243548

(辺長) = 2y = 1.309071871314 R = 1.508551431285

>>694  では
 AB    1.50855153
 BC    1.50855124
 CD    1.50855116
 DA    1.50855141
 AC/√2   1.50855112
 BD/√2   1.50855155
714681
2024/04/30(火) 15:21:31.75ID:ElCKljKY
>>701
 AM-GM不等式から u ≦ (s/3)^3,
 u = (1-ab)(1-c) + (1-a)(1-b) + (s-2) ≧ s-2,
なので、これらは必要条件です。

一方、 (a, b, c) = (a, (s-a)/2, (s-a)/2) とすれば aについて連続で
 a=s/3 のとき u = (s/3)^3,
 0≦s≦2, a→0 のとき u→0,
 2≦s≦3, a=s-2 のとき u = s-2.
なので、これらは十分条件です。
715132人目の素数さん
2024/04/30(火) 15:57:42.29ID:Ihu8IrO2
a+b+c = s
a,b,c ∈ [0,1]^3
は1<s<2で6角形、それ以外で三角形
log(a) + log(b) + log(c)は極大点で最大、頂点のいずれかで最小
716132人目の素数さん
2024/04/30(火) 16:30:44.11ID:VcpWQbIP
>>712
この設定で1000回シミュレーションしてみた結果
> summary(items3)
Min. 1st Qu. Median Mean 3rd Qu. Max.
2540 669366 1529078 2227857 3122298 13173932

ゲームに嵌まると散財することが実感できる。
717132人目の素数さん
2024/04/30(火) 17:13:45.54ID:CUnZsjR/
>>716
スレ違いだって言ってんだろ
頭沸いて理解出来ない?
とっとと失せろ無能
718132人目の素数さん
2024/04/30(火) 17:48:23.68ID:yB25sIh4
>>716
質問スレで延々と勝手に数学もどきの出題を繰り返す日本語理解できないチンパンジーはこちらです
719132人目の素数さん
2024/04/30(火) 18:18:11.61ID:ElCKljKY
>>696
 s + t = 1 は、
P1-P2 の中点Mと P5 を通る直線Lに関して対称ということですね。
そのとき

s = (R・sin(4π/7)-y}/{R・sin(4π/7)-R・sin(6π/7)}
 = 2cos(π/7){1-cos(π/7)sin(3π/7)/[cos(π/7)+cos(3π/7)+sin(3π/7)]}
 = 0.592173416655…
t = 0.407826583345…

面積 S = (2y)^2
   = 1.7136691642655 RR
   = 2.2757274208314
720132人目の素数さん
2024/04/30(火) 18:23:38.72ID:1h+NNAq/
正三角形のときどうやればいいか上がってるのに
正方形の場合に全く応用できない
そのレベルの知能でアホな問題垂れ流す能無し
721132人目の素数さん
2024/04/30(火) 18:47:35.40ID:G1dpTkaa
プログラムで解いても
背後にある数学的なロジックは
分からない
722132人目の素数さん
2024/04/30(火) 18:50:37.12ID:G1dpTkaa
◆怒涛のWolfram 一行入力

原始ピタゴラス数x^2+y^2=z^2 の
出力アルゴリズム

[z-y=1]

Table[2n{(n+1)^(C(1,a-2))}+C(0,3mod a),{n,1,50},{a,1,3}]

[z-y=2]

Table[4(n+1)^{(C(1,a-1))+1}+(C(1,a-1))(-1)^a,{n,1,30},{a,0,2}]

[z-y=8]

Table[4(2n+3)+{(2n+1)^(2C(1,a-1))}(C(1,a-1))-8(C(0,a-1)),{n,1,30},{a,0,2}]
723132人目の素数さん
2024/04/30(火) 18:54:36.49ID:G1dpTkaa
◆お題

『縦4マス、
横5マスの20マスの中に
ランダムに選ばれた
1から20個の宝が眠っている
AFKPBGLQ…の順で縦に宝を探していく
方法をとるP君と、
ABCDEFGH…の順で横に宝を探していく
方法をとるQ君が、
同時に地点Aから探索を開始した
どっちの方が有利?』

ABCDE
FGHIJ
KLMNO
PQRST



※プログラムでは決してロジックが
理解できない
724132人目の素数さん
2024/04/30(火) 19:41:41.70ID:mjLF6hIG
50円の割引券が1枚ある。
この割引券を使い、100円の商品Aか、200円の商品Bを50円引きで購入したい。
以下の①~③から正しいものを選べ。

①Aに割引券を使うほうが得である
②Bに割引券を使うほうが得である
③①、②のいずれも誤りである
725132人目の素数さん
2024/04/30(火) 20:38:09.28ID:VcpWQbIP
>>683
>レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
の確率に関しては情報がないため
下がる そのまま 上がる の確率は 形状パラメータ(1,1,1)のディリクレ分布に従って変動するとして計算する。

乱数発生させてWolfram言語でのシミュレーション(推敲希望)

sim[] :=(
item=0;
L=0;
While[L<10,
p1p2=RandomVariate[DirichletDistribution[{1,1,1}]];
p={p1p2[[1]],p1p2[[2]],1-Total[p1p2]};
L=L + RandomChoice[p -> {-1,0,1}];
item++];
item
)
試行回数に上限がないの算出までに時間がかかる。

出力例

In[20]:= items=Table[sim[],100]

Out[20]= {134, 1452, 108, 256, 427, 137, 258, 817, 38, 191, 33, 1340, 21084, 74730, 201, 106, 2523, 2909, 623, 2024,

> 26, 74, 246, 203, 5135, 4473, 536, 6742, 1341, 171, 22, 144, 115, 61, 32, 90, 88, 697, 105, 120, 21503, 355,

> 26018, 15051, 199, 18576, 936, 194, 531, 801, 1457, 90, 114, 104787, 3017, 434, 176, 1180, 494, 144, 1411, 358,

> 25, 1960, 429, 129997, 1960, 8345, 364, 1185, 356, 190, 139, 301, 149814, 547, 132, 458, 12, 231, 1351170, 17175,

> 981, 353, 136, 104657, 7607, 18538, 1621, 265, 923, 260, 58, 768, 1141, 180, 122, 197, 112, 78}


summary(items)
Min. 1st Qu. Median Mean 3rd Qu. Max.
12.0 136.8 361.0 21304.2 1498.0 1351170.0

uncertainty interval(分位数で算出)

In[25]:= Quantile[items,{0.025,0.975}]

Out[25]= {25, 129997}
726132人目の素数さん
2024/04/30(火) 21:47:56.63ID:VcpWQbIP
>>725
自己推敲

sim[] :=(
item=0;
L=0;
While[L<10,
p1p2=RandomVariate[DirichletDistribution[{1,1,1}]];
p={p1p2[[1]],p1p2[[2]],1-Total[p1p2]};
d=RandomChoice[p -> {-1,0,1}];
If[!(L==0 && d==-1), L=L+d];
item++];
item
)
727132人目の素数さん
2024/04/30(火) 22:08:03.20ID:CMYzy4AG
>>714 ありがとうございます。

>u = (1-ab)(1-c) + (1-a)(1-b) + (s-2) ≧ s-2

この変形は普通に思い浮かぶものなのですか?
なんか天才の狂気じみたヒラメキに見えるのですが( ゚д゚)ポカーン
728132人目の素数さん
2024/04/30(火) 22:29:16.36ID:VcpWQbIP
>>726
可読性向上

sim[] :=(
item=0;
L=0;
While[L<10,
p1=RandomReal[]; (* runif(1) *)
p2=RandomReal[1-p1]; (* runif(1,0,1-p1) *)
p3=1-p1-p2;
d=RandomChoice[{p1,p2,p3} -> {-1,0,1}]; (* sample(c(-1,1,1),1,prob=c(p1,p2,p3)) *)
If[!(L==0 && d==-1), L=L+d];
item++];
item
)
sim[]
729132人目の素数さん
2024/04/30(火) 22:31:01.13ID:VcpWQbIP
>>723
デジャブかな?過去スレでみたような。
730714
2024/04/30(火) 22:56:30.77ID:ElCKljKY
>>727
そうかもね。
a, b, c のうち2つが1に近づくとき等号だから
1-a, 1-b, 1-c などの2次式になるんぢゃね?
731132人目の素数さん
2024/04/30(火) 23:24:58.84ID:dbyjbpZp
77
732132人目の素数さん
2024/05/01(水) 02:45:38.59ID:vlziLzZU
尿瓶ジジイのゴミみたいな自演
733 【大吉】
2024/05/01(水) 03:48:57.93ID:d9hBLn+1
>>688
厳密解が見えた。立式中。ちょっと待ってて。
ゴールデンウィーク中にやる。
自分で作図したら目が覚めた。
すでにある答案や綺麗な作図に惑わされてはいけない。
734132人目の素数さん
2024/05/01(水) 06:58:09.54ID:kfVYB1fe
Wolfram言語の練習問題

>武器のレベルを上げるためにアイテムを1つ使用します
>その結果レベルが下がる そのまま 上がる となりそれぞれに確率が設定されています
>また初期レベル0から10までのレベルアップの段階のそれぞれで違う確率が設定されています
を計算問題化。

設定された確率に関しては情報がないので、「下がる そのまま 上がる」の確率は無作為に決定されるとして計算する。

sim[] :=(
item=0;
L=0;
While[L<10,
d = RandomChoice[ RandomReal[1,3] -> {-1,0,1} ]; (* sample(c(-1,0,1),1,prob=runif(3) *)
If[!(L==0 && d==-1), L=L+d];
item++;
];
item
)


問題 レベル10まで到達するために必要なアイテムの数が1000以下である確率の近似値を計算せよ。


備忘録

RandomChoiceは自動で正規化されるようなのでコードが簡略化できた。
RandomChoice[RandomReal[1,3]] // #/Total[#] & とする必要はなかった。

RandomChoiceでChoiceする個数を指定すると1個でもリストで返してくる。
In[1]:= RandomChoice[Range[10]]

Out[1]= 10

In[2]:= RandomChoice[Range[10],1]

Out[2]= {7}
735132人目の素数さん
2024/05/01(水) 09:33:40.58ID:mCjWTIo5
#上限を設定しないとシミュレーションがなかなか終わらないので到達レベル、上下確率、アイテム数を設定できるように修正。

sim = \(level=10,p=runif(3),limit=NULL){
item=0
L=0
while(L<level && item < ifelse(is.null(limit),Inf,limit+2)){
item=item+1
d=sample(c(-1,0,1),1,prob=p)
if(!(L==0 & d==-1)) L=L+d
}
return(item)
}

#上下確率は一様分布に従うとしアイテムが1000以下でレベル10に達する確率を10万回のシミュレーションで出してみる。

replicate(1e5,sim(level=10,p=runif(3),limit=1000) < 1002 |> mean()

> (replicate(1e5,sim(level=10,p=runif(3),limit=1000)) < 1002) |> mean()
[1] 0.67713

シミュレーションはRの方が書きやすい。
分数で結果を返す必要がないし。
736132人目の素数さん
2024/05/01(水) 09:59:50.71ID:FxX5gtGv
x>y≧0とする。
f(x,y) = x√x-2x√y+y√y
g(x,y) = x√x-2y√x+y√y
について、f(x,y)およびg(x,y)が負となることがあるならば、その(x,y)の一例を与えよ。
負となることがないならば、それを証明せよ。
737132人目の素数さん
2024/05/01(水) 10:50:53.72ID:sgJI4piv
age
738132人目の素数さん
2024/05/01(水) 12:04:05.10ID:YLWuTEmf
t≧1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^2
0<t≦1 ⇒ t^6+1 ≧ 2t^3 ≧ 2t^4
739132人目の素数さん
2024/05/01(水) 13:11:02.13ID:j7aeZLGo
>>683
追加補足
例えば、レベル i への成功確率を100-5i、失敗確率は全て0.1(但しレベル1以上)だとすると、
mathematicaでは次のようにして計算できます。

v=Table[x[i],{i,0,10}];
u=Table[Boole[i!=10],{i,0,10}];
M={
{ 5,95, 0, 0, 0, 0, 0, 0, 0, 0, 0},
{10, 0,90, 0, 0, 0, 0, 0, 0, 0, 0},
{ 0,10, 5,85, 0, 0, 0, 0, 0, 0, 0},
{ 0, 0,10,10,80, 0, 0, 0, 0, 0, 0},
{ 0, 0, 0,10,15,75, 0, 0, 0, 0, 0},
{ 0, 0, 0, 0,10,20,70, 0, 0, 0, 0},
{ 0, 0, 0, 0, 0,10,25,65, 0, 0, 0},
{ 0, 0, 0, 0, 0, 0,10,30,60, 0, 0},
{ 0, 0, 0, 0, 0, 0, 0,10,35,55, 0},
{ 0, 0, 0, 0, 0, 0, 0, 0,10,40,50},
{ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,100}}/100;
Reduce[v+u==M.v,Delete[v,1]]
740132人目の素数さん
2024/05/01(水) 13:11:43.23ID:j7aeZLGo
続き

20 130 3490 19445 76033 666209
Out[6]= x[1] == -- + x[0] && x[2] == --- + x[0] && x[3] == ---- + x[0] && x[4] == ----- + x[0] && x[5] == ----- + x[0] && x[6] == ------ + x[0] &&
19 57 969 3876 11628 81396

10556593 37908457 492959263 2889951391
> x[7] == -------- + x[0] && x[8] == -------- + x[0] && x[9] == --------- + x[0] && x[10] == ---------- + x[0]
1058148 3174444 34918884 174594420

In[7]:= %//N
Out[7]= x[1.] == 1.05263 + x[0.] && x[2.] == 2.2807 + x[0.] && x[3.] == 3.60165 + x[0.] && x[4.] == 5.01677 + x[0.] && x[5.] == 6.53879 + x[0.] &&

> x[6.] == 8.18479 + x[0.] && x[7.] == 9.97648 + x[0.] && x[8.] == 11.9418 + x[0.] && x[9.] == 14.1173 + x[0.] && x[10.] == 16.5524 + x[0.]

シミュレーションを行うなら、
Table[pq[i]={95-5*i,10*Boole[i>0],5+5*i-10*Boole[i>0]}/100,{i,0,9}]
Sim:=(For[L=count=0,L<10,count++,L+=RandomChoice[pq[L]->{1,-1,0}]];count)
n=100000;sum=0;Do[sum+=Sim,n];sum/n//N
数秒待たされますが、16.556、16.552、16.5607等の値が得られます。
741132人目の素数さん
2024/05/01(水) 13:21:44.69ID:AD3i5GdB
>>736
 x≧0, y≧0 より
 f(x,y) + g(x,y) = 2(x-y)(√x-√y) ≧ 0,
∴ f(x,y) <0, g(x,y) <0 となることはない。
742132人目の素数さん
2024/05/01(水) 14:05:30.22ID:AD3i5GdB
>>715
断面三角形の「頂点」は立方体 [0,1]^3 の稜だから
a,b,c のうち2つは 0 か 1
 0≦s≦1 … u = 0・0・s = 0,
 1≦s≦2 … u = 0・(s-1)・1 = 0,
 2≦s≦3 … u = (s-2)・1・1 = s-2,
743132人目の素数さん
2024/05/01(水) 14:10:59.67ID:oovJ6Flh
50円の割引券が1枚ある。
この割引券を使い、100円の商品Aか、200円の商品Bを50円引きで購入したい。
以下の①~③から正しいものを選べ。

①Aに割引券を使うほうが得である
②Bに割引券を使うほうが得である
③①、②のいずれも誤りである
744132人目の素数さん
2024/05/01(水) 14:33:21.69ID:a9i08X5o
レス乞食大量発生中
745132人目の素数さん
2024/05/01(水) 15:04:48.18ID:AD3i5GdB
>>692
重心間の距離
x = R・{[cos(π/7)+sin(π/7)][2cos(π/7)-1]-1}/{2cos(2π/7)[1+2sin(π/7)]}
 = 0.030256170633 R


 cos(π/7)-cos(2π/7)-cos(4π/7) = 1/2,
 -sin(π/7) + sin(2π/7) + sin(4π/7) = (1/2)√7,
746 【豚】
2024/05/01(水) 16:13:22.51ID:05InBZP6
>>733
>>666
正7角形と正方形の中心はわずかにずれるから、
中心付近に原点をとるのを避け、
正7角形をx軸に正対させ、正中線にy軸をとると、
正方形の1辺の長さの半分をaとして、
正方形の面積は4a^2
y軸上の正7角形の頂点の座標は(0,1+cos(π/7))
正方形の上辺のy座標は、
1-a{sin(π/7)/cos(π/7)}+cos(π/7)
正方形の下辺のy座標は、
1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a
一方、正7角形の下辺右端の座標は(sin(π/7),0)
そこから正方形の右下端
(a, 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a)
までの傾きはsin(2π/7)/cos(2π/7)だから、
{a-sin(π/7)}{sin(2π/7)/cos(2π/7)}
=1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a
{sin(2π/7)/cos(2π/7)+sin(π/7)/cos(π/7)+2}a
= {sin(2π/7)/cos(2π/7)}sin(π/7)+cos(π/7)+1
2倍角の公式より、
[2sin(π/7)cos(π/7)/{2cos^2(π/7)-1}+sin(π/7)/cos(π/7)+2]a
=[2sin^2(π/7)cos(π/7)/{2cos^2(π/7)-1}+cos(π/7)+1
通分して{2sin(π/7)cos^2(π/7)+2sin(π/7)cos^2(π/7)-sin(π/7)+4cos^3(π/7)-2cos(π/7)}a
=2sin^2(π/7)cos^2(π/7)+2cos^4(π/7)-cos^2(π/7)+2cos^3(π/7)-cos(π/7)
a=cos(π/7){2cos(π/7)-1}{cos(π/7)+1}/{4cos^3(π/7)+4sin(π/7)cos^2(π/7)-sinπ/7-2cos(π/7)}
=1.37348980186/2.09841771404
=0.65453593565
∴4a^2=1.71366916427
747 【豚】
2024/05/01(水) 16:15:33.02ID:05InBZP6
>>733
>>666
正7角形と正方形の中心はわずかにずれるから、
中心付近に原点をとるのを避け、
正7角形をx軸に正対させ、正中線にy軸をとると、
正方形の1辺の長さの半分をaとして、
正方形の面積は4a^2
y軸上の正7角形の頂点の座標は(0,1+cos(π/7))
正方形の上辺のy座標は、
1-a{sin(π/7)/cos(π/7)}+cos(π/7)
正方形の下辺のy座標は、
1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a
一方、正7角形の下辺右端の座標は(sin(π/7),0)
そこから正方形の右下端
(a, 1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a)
までの傾きはsin(2π/7)/cos(2π/7)だから、
{a-sin(π/7)}{sin(2π/7)/cos(2π/7)}
=1-a{sin(π/7)/cos(π/7)}+cos(π/7)-2a
{sin(2π/7)/cos(2π/7)+sin(π/7)/cos(π/7)+2}a
= {sin(2π/7)/cos(2π/7)}sin(π/7)+cos(π/7)+1
2倍角の公式より、
[2sin(π/7)cos(π/7)/{2cos^2(π/7)-1}+sin(π/7)/cos(π/7)+2]a
=[2sin^2(π/7)cos(π/7)/{2cos^2(π/7)-1}+cos(π/7)+1
通分して{2sin(π/7)cos^2(π/7)+2sin(π/7)cos^2(π/7)-sin(π/7)+4cos^3(π/7)-2cos(π/7)}a
=2sin^2(π/7)cos^2(π/7)+2cos^4(π/7)-cos^2(π/7)+2cos^3(π/7)-cos(π/7)
a=cos(π/7){2cos(π/7)-1}{cos(π/7)+1}/{4cos^3(π/7)+4sin(π/7)cos^2(π/7)-sinπ/7-2cos(π/7)}
=1.37348980186/2.09841771404
=0.65453593565
∴4a^2=1.71366916427
748132人目の素数さん
2024/05/01(水) 16:41:41.76ID:oovJ6Flh
次の極限をaで表せ。
ただしaは実数の定数で、a≠-2とする。

Σ[k=0,∞] 1/(k^2+ak+1)
749132人目の素数さん
2024/05/01(水) 16:49:37.95ID:bYmgV8Yf
一辺の長さが1の正三角形ABCの辺AB,BC,CA上にそれぞれ点D,E,Fをとる。
ただしD,E,Fは△ABCの頂点には一致しないものとする。

(1)s,t,uは0より大きく1より小さい実数とする。AD=s、BE=t、CF=uのとき、△DEFの面積をs,t,uで表せ。

(2)△ADFの重心をP、△BEDの重心をQ、△CFEの重心をRとする。
(△PQRの面積)≧(△DEFの面積)
を示せ。

(3)(2)の不等式において等号が成立する場合をすべて求めよ。
750132人目の素数さん
2024/05/01(水) 16:54:16.12ID:lmX+G2vB
mを自然数とする。
以下の極限が収束するかどうかを判定せよ。
lim[n→∞] Σ[k=2,n] 1/[k{(logk)^m}]
751132人目の素数さん
2024/05/01(水) 18:16:34.89ID:YLWuTEmf
(3 s t + 3 s u - 3 s + 3 t u - 3 t - 3 u + 9 )/9 ≧ stu + (1-s)(1-t)(1-u)
752132人目の素数さん
2024/05/01(水) 19:13:42.89ID:lcM/C+EM
(3 s t + 3 s u - 3 s + 3 t u - 3 t - 3 u + 9 )/27 ≧ stu + (1-s)(1-t)(1-u)
753132人目の素数さん
2024/05/01(水) 19:19:55.66ID:lcM/C+EM
https://www.wolframalpha.com/input?i=%283+x+y+%2B+3+y+z+%2B+3+x+z+-3x+-3y+-3z%2B+9+%29+-+27x+y+z-+27+%281-x%29%281-y%29%281-z%29&lang=ja
754132人目の素数さん
2024/05/01(水) 20:15:34.70ID:mCjWTIo5
>>747
Rでの作図に用いた数値と合致しております。お疲れ様でした。

正方形の1辺の長さ
> abs(A-B)
[1] 1.309072

> abs(A-B)^2
[1] 1.713669

対角線の交点と原点(7角形の重心)との距離
> abs(intsect(A,C,B,D))
[1] 0.0302562
755132人目の素数さん
2024/05/01(水) 23:09:37.73ID:QBB0w06A
>>750
・m=1 のとき
1/{k・log(k)}
 ≧ log(1+1/k) / log(k)
 = log(k+1)/log(k) - 1
 ≧ log{log(k+1)/log(k)}
 = log(log(k+1)) - log(log(k)),
より
Σ[k=2,n] 1/{k・log(k)}
 ≧ log(log(n+1))-log(log(2))
 → ∞   (n→∞)
∴ 発散
* x ≧ log(1+x) を使った。

・m>1 のとき
Σ[k=3,n] 1/{k・log(k)^m}
 ≦ Σ[k=3,n] ∫[k-1,k] 1/{x・log(x)^m} dx
 = ∫[2,n] 1/{x・log(x)^m} dx
 = (1/(m-1))[ -1/log(x)^{m-1} ](x=2,n)
 = (1/(m-1))( 1/log(2)^{m-1} - 1/log(n)^{m-1} )
 → (1/(m-1)) 1/log(2)^{m-1}   (n→∞)
∴ 収束
756132人目の素数さん
2024/05/01(水) 23:24:55.24ID:AD3i5GdB
γ ' = Σ[k=2,n] 1/{k・log(k)} - log(log(n))
  = 0.79467864…    (おいらの定数)
757132人目の素数さん
2024/05/01(水) 23:29:57.47ID:oiWny2jK
え?一次式?
758756
2024/05/02(木) 00:12:52.18ID:HrSDZOU2
訂正
γ ' = lim[n→∞] ( Σ[k=2,n] 1/{k・log(k)} - log(log(n)) )
  = 0.79467864…       (おいらの定数)
759132人目の素数さん
2024/05/02(木) 00:15:24.39ID:QhmUzXll
微分して定数なら一次式になる?
ホント?
760132人目の素数さん
2024/05/02(木) 00:44:14.85ID:HrSDZOU2
>>745
mを自然数とする。

cos(2^{m-1}・π/7) + cos(2^{m}・π/7) + cos(2^{m+1}・π/7)
  =-1/2 + 2cos(π/7)δ(m,1)

sin(2^{m-1}・π/7) + sin(2^{m}・π/7) + sin(2^{m+1}・π/7)
  = (√7)/2 + 2sin(π/7)δ(m,1)
761132人目の素数さん
2024/05/02(木) 00:48:04.62ID:HrSDZOU2
>>759
微分して定数(≠0)なら一次式になる。
微分して 0 なら定数になる。
762132人目の素数さん
2024/05/02(木) 05:46:28.56ID:QhmUzXll
What is Y ?
763132人目の素数さん
2024/05/02(木) 11:59:02.49ID:HrSDZOU2
γ = lim[n→∞] ( Σ[k=1,n] 1/k - log(n) )
 = 0.577215665…     (オイラーの定数)
764132人目の素数さん
2024/05/02(木) 14:52:35.46ID:2SgEedok
もしかしてγ’は“定数γの微分”ではなく“γっぽいべつの定数”の意味?
765132人目の素数さん
2024/05/02(木) 14:57:23.33ID:2SgEedok
収束証明はダメなんじゃないの
受験数学では
単調増大有界数列は収束する
は禁止だよ
766132人目の素数さん
2024/05/02(木) 15:05:10.52ID:W5Q+jvGD
禁止というほどではない
実数の公理なのに使っていけないとは言えないだろ
767132人目の素数さん
2024/05/02(木) 15:45:08.55ID:ZE4O8QQ4
そんなのが許されるなら

a1 = 0
a[n+1] = √(a[n]+1)
が収束する事を示せ

が秒で終わってしまう
768132人目の素数さん
2024/05/02(木) 16:27:04.01ID:wE1o1pXx
上に有界と単調増加両方だから秒では終わらない
769755
2024/05/02(木) 16:43:43.49ID:HrSDZOU2
>>765
770132人目の素数さん
2024/05/02(木) 16:48:09.26ID:x/eY51eo
定数使う数式は
ろくなもんじゃない
771755
2024/05/02(木) 16:52:36.95ID:HrSDZOU2
>>765
 高校数学では実数の公理は教えないんだね。
 完備性がないから、コーシー列でも収束するとは限らん?
 となると、使える手が少ないなぁ。
772132人目の素数さん
2024/05/02(木) 17:01:33.65ID:kwBHyfY1
数学の前に日本語の勉強からしたらどうだ?
773132人目の素数さん
2024/05/02(木) 17:26:45.93ID:HrSDZOU2
>>767
もし収束するなら極限は
 φ = (1+√5)/2 = 1.618034
しかない。
 φ-a[n+1] = {1/(φ+a[n+1])} (φ-a[n]),
 φ-a[1] = φ > 0 だから φ-a[n+1] > 0,
∴ 1 ≦ a[n+1] < φ,
また
 0 < 1/(φ+a[n+1]) ≦ 1/(φ+1),
より
 0 < φ-a[n+1]
 < (φ-a[1])/(φ+1)^n
 = φ/(φ+1)^n
と挟み撃ちにするのかな。まで 59秒…
774132人目の素数さん
2024/05/02(木) 17:51:26.19ID:ZE4O8QQ4
受験数学で証明抜きに使っていいのは検定教科書に載ってるものと問題文に使っていいと言われてるものだけ
教科書に載ってる証明できますかも出題される
その場合はもちろん「教科書に載ってるので明らか」は禁止
775132人目の素数さん
2024/05/02(木) 17:52:31.37ID:ZE4O8QQ4
>>773
小学生か
776132人目の素数さん
2024/05/02(木) 17:54:21.59ID:ZE4O8QQ4
ごめん
証明してくれたんだな
777758
2024/05/02(木) 17:55:23.66ID:HrSDZOU2
>>764
正解です!!
これも高校数学では教えません。
778132人目の素数さん
2024/05/02(木) 18:11:10.56ID:ZE4O8QQ4
まぁ一応このタイプは単調増大列b[n](n≧0)で

lim b[n] = q
lim a[n]/(b[n]-b[n-1]) = 0

となるものを選んでおいて p=b[0] として

f(x) = -6 a[n]((x-b[n])(x-b[n-1])/(b[n]-b[n-1]))^3 ( b[n-1]≦x≦b[n] )
= 0 ( x = q )

とおけば p≦x≦q で定義された連続関数で

Σ[n=1,N] a[n] = ∫[b[0],b[n]] f(x)dx

と挟み撃ち論法と教科書範囲内の積分の不等式でなんとかなる場合が多い
779132人目の素数さん
2024/05/02(木) 18:46:05.77ID:DQgfZQT1
連続関数で1対1ならば狭義単調関数である事は高校範囲で証明できますか?
780132人目の素数さん
2024/05/02(木) 18:59:04.79ID:8jV03gLA
このスレでの書き込み回数多い奴⊂日本語読解力がない奴
781132人目の素数さん
2024/05/02(木) 18:59:32.19ID:8jV03gLA
>>780の命題は真ですか
782 警備員[Lv.7][新初]
2024/05/02(木) 21:39:51.00ID:J3LBJ7Q+
積分の詳しい参考書教えてください。
783132人目の素数さん
2024/05/02(木) 22:10:17.16ID:41OMNKk+
>>782
どういった部分を詳しく知りたいとかある?
全然分からないからわかりやすいのがいいとか、
演習の解説が多いのがいいとか
784132人目の素数さん
2024/05/03(金) 01:29:23.12ID:NDIqegzM
積分だけをまとめた成書はあまり思いつかないけど…

入江盛一 著:「積分学」培風館(新数学シリーズ19) (1961)

公式集は色々ある。

森口・宇田川・一松 著:「数学公式 I」岩波全書221 (1956)

ピーアス・フォスター 著:「改訂 簡約積分表」ブレイン図書出版 (1972)
   (理工学海外名著シリーズ6)

 B.O.Peirce・R.M.Foster:"A short table of integrals", 4th edition (revised version)

 D.B. de Haan:「定積分表」岩波書店 (1935)

大きい図書館ならあるかも。
785132人目の素数さん
2024/05/03(金) 01:56:07.45ID:NDIqegzM
NDLサーチ で目次etcを見れるのもあります…
 (国立国会図書館)

ピーアス・フォスターの積分公式(の一部)は証明もあるようです。

「三角関数を含む式」(266~389)
//izumi-math.jp/Y_Murata/sanpomichi10.pdf

「指数関数を含む式」(411~435) および「その他の関数を含む式」
//izumi-math.jp/Y_Murata/sanpomichi11.pdf

「対数関数を含む式」(442~460)
//izumi-math.jp/Y_Murata/sanpomichi09.pdf
786132人目の素数さん
2024/05/03(金) 06:10:51.13ID:/GsOL4J8
>>743
何を得かと考えるか次第では?
乗数効果を勘案すれば、③
787132人目の素数さん
2024/05/03(金) 06:13:07.50ID:/GsOL4J8
東大合格者向けの命題の問題

次の各命題が恒真命題であるか否かを答えよ。

(1) 罵倒厨ならば(自演認定厨ならば罵倒厨である)。
(2) (罵倒厨でないならば 罵倒厨である)ならば 自演認定厨である。
788132人目の素数さん
2024/05/03(金) 06:54:23.31ID:ywvjMml1
自演が図星で発狂中w
789132人目の素数さん
2024/05/03(金) 09:12:04.49ID:jKxoijIL
lim[n→∞] Σ[k=1,n] k/(k^2+1) - logn
を求めよ。
必要であれば以下の実数γをもちいてよい。
lim[n→∞] Σ[k=1,n] 1/k - logn = γ
790132人目の素数さん
2024/05/03(金) 11:02:01.76ID:ysW3gw13
>>787
何処が高校数学か説明してみろよ
791132人目の素数さん
2024/05/03(金) 11:12:00.47ID:B5VyeStg
https://www.wolframalpha.com/input?i=%CE%A3%5Bk%3D1%2C%E2%88%9E%5D+%28k%2F%28k%5E2%2B1%29+-+1%2Fk%29&lang=ja
792132人目の素数さん
2024/05/03(金) 11:30:20.90ID:bg8yoFa0
>>779
お願いします
793132人目の素数さん
2024/05/03(金) 12:04:05.07ID:yPh+RzKX
お願い乞食になりすまして、狙ってあれこれボカしてるわけですね
794132人目の素数さん
2024/05/03(金) 15:01:28.03ID:vKMqGqSL
一辺の長さが1の正三角形ABCの内部に点PをAP=1となるようにとる。
このとき積BP・CPの最大値を求めよ。
795132人目の素数さん
2024/05/03(金) 15:02:37.47ID:m60wEt0p
>>794
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
796132人目の素数さん
2024/05/03(金) 15:40:30.32ID:n2TL2wCf
>>790
尿瓶ジジイのチンパン高校数学
797132人目の素数さん
2024/05/03(金) 19:27:18.34ID:oNzXUkCO
3^26の桁数を求めよ。
(質問者注:対数の値は用意されていません)
798132人目の素数さん
2024/05/03(金) 19:56:45.10ID:0mkbFve4
>>797
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
799132人目の素数さん
2024/05/03(金) 20:18:15.42ID:oNzXUkCO
>>798
高校数学の質問をしておりますので、本スレッドが最も適当な質問場所でございます
800132人目の素数さん
2024/05/03(金) 20:23:33.23ID:CIq18oDi
>>799
質問の仕方も知らないんだな
801132人目の素数さん
2024/05/03(金) 20:38:39.24ID:oNzXUkCO
>>800
はい、質問の仕方を教えていただけないでしょうか
802132人目の素数さん
2024/05/03(金) 20:46:23.29ID:LEiR5uSw
>>801
イヤだよスレ違いだもの
余所で聞いて身につけてからまたここで質問して
803132人目の素数さん
2024/05/03(金) 21:08:40.31ID:oNzXUkCO
3^26の桁数を求めよ。
(質問者注:対数の値は用意されていません)
804132人目の素数さん
2024/05/03(金) 21:08:54.31ID:oNzXUkCO
>>803
これで質問になっております
805132人目の素数さん
2024/05/03(金) 21:09:26.30ID:62ZO2Vbp
>>797
3^2=9<10
3^26<10^13
10^12≦3^26
3^13=3^83^43^1=6561・81・3=6561・243=1594323>10^6
10^12<3^26<10^13
13桁
806132人目の素数さん
2024/05/03(金) 21:10:02.13ID:62ZO2Vbp
>>804
中学数学じゃないの?
807132人目の素数さん
2024/05/03(金) 21:11:12.11ID:oNzXUkCO
>>805
正解です
新潟大学で出題されております
808132人目の素数さん
2024/05/03(金) 21:12:55.79ID:62ZO2Vbp
>>807
>新潟大学で出題
バカ大学なの?
809132人目の素数さん
2024/05/03(金) 21:27:19.33ID:tusoxaq3
>>804
問と質問の意味は違うぞ
810132人目の素数さん
2024/05/03(金) 22:32:01.37ID:NDIqegzM
>>797, 803
 (1+1/n)^{n+0.5} → e    (n→∞)

n= 3・3 = 9 とする。
 (10/9)^{9.5} ≒ e ≒ 9/√10,

∴ 10^10 ≒ 3^21,

また 3^5 = 243 は 3桁。

∴ 3^26 は 13桁。
811132人目の素数さん
2024/05/03(金) 23:44:05.32ID:wZZycuDS
2次不等式2x²-3x-2≦0…①を満たすxの値が常に2次不等式x²-2ax-2≦0を満たすような実数aの範囲を求めよ
解説 ①から…(略)… -1/2≦x≦2…②
   f(x)=x²-2ax-2とすると求める条件はf(-1/2)≦0かつf(2)≦0
   f(-1/2)≦0から…a≦7/4…③ f(2)≦0から…a≧1/2…④
   ②~④から1/2≦a≦7/4(ここが謎)
   なんで②を参照しないといけないのでしょうか
812132人目の素数さん
2024/05/03(金) 23:52:15.57ID:2uq5w+M8
③④よりでよい
813132人目の素数さん
2024/05/04(土) 00:00:36.23ID:kySX4gCX
>>812
ありがと
814132人目の素数さん
2024/05/04(土) 00:45:22.33ID:mGKd70RD
◆Table[3^n,{n,1,26}]

3
9
27
81
243
729
2187
6561
19683
59049
177147
531441
1594323
4782969
14348907
43046721
129140163
387420489
1162261467
3486784401
10460353203
31381059609
94143178827
282429536481
847288609443
2541865828329 [13]

∴13桁
815132人目の素数さん
2024/05/04(土) 00:48:21.67ID:mGKd70RD
6^3+8^3=9^3-1

6^3=8(3^3)
8^3=19(3^3)-1
9^3=27(3^3)

6^2+8^2=10^2

1は自然数最小の立方数

9^3-1=26(3^3)+26
816132人目の素数さん
2024/05/04(土) 08:29:18.16ID:ALgDBpRk
3^2024(十進法)の先頭の数字を求めよ。

応用問題
3^2024(十六進法)の先頭の数字を求めよ。
817132人目の素数さん
2024/05/04(土) 09:01:22.67ID:RS+aZjjf
3^2024(十六進法)の先頭の数字を十六進法で示せ。
818132人目の素数さん
2024/05/04(土) 09:05:03.98ID:RS+aZjjf
>>794
P=B or C
BP*CP=1
819132人目の素数さん
2024/05/04(土) 09:20:53.98ID:gtx0eIYg
>>779
これをお願いします
820132人目の素数さん
2024/05/04(土) 09:30:22.85ID:dWNskf6I
>>816,817
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
821132人目の素数さん
2024/05/04(土) 09:33:53.75ID:4JosU2xG
傑作質問です

一辺の長さが1の正三角形ABCの内部に点PをAP=1となるようにとる。
このとき積BP・CPの最大値を求めよ。
822132人目の素数さん
2024/05/04(土) 09:34:27.93ID:4JosU2xG
>>820
繰り返し同じ書き込みをする行為は荒らしです
すぐにやめなさい
823132人目の素数さん
2024/05/04(土) 10:17:34.45ID:RS+aZjjf
>>799
同感。
質問だけだと過疎スレになるから。
出題があると賑わっていいと思う。
824132人目の素数さん
2024/05/04(土) 10:18:55.45ID:RS+aZjjf
>>821
825132人目の素数さん
2024/05/04(土) 10:48:11.10ID:A4dHMEcy
>>821
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
826132人目の素数さん
2024/05/04(土) 10:48:46.24ID:A4dHMEcy
>>822
荒らしではありません
スレの趣旨に則らない書き込みが荒らしです
827132人目の素数さん
2024/05/04(土) 10:52:55.18ID:A4dHMEcy
>>823
過剰な出題のせいで質問の書き込みが減っているとは考えられませんか?
それに質問がないならないで過疎スレになるのは当然であり、
出題スレを賑わせば良いだけです
高校数学の質問スレだけを賑わす理由にはなりません
828132人目の素数さん
2024/05/04(土) 12:55:29.60ID:9aDs5pF7
まぁそもそもこいつの書き込みが数学的に全く意味がないのでどこに書かれても迷惑なんだけどな。
こいつがこの世界で役に立てることなど一つもない
829132人目の素数さん
2024/05/04(土) 13:05:28.54ID:4JosU2xG
傑作質問です

一辺の長さが2の正三角形ABCの内部に点PをAP=1となるようにとる。
このとき積BP・CPの最大値を求めよ。
830132人目の素数さん
2024/05/04(土) 14:52:07.69ID:ft2h0fgD
 AB = AC = 2, AP = 1,
より
 A (0, 0)
 B (√3, -1)
 C (√3, 1)
 P (cosθ, sinθ)    (-30°<θ<30°)
とおく。

第二余弦定理より
BP^2 = AB^2 + AP^2 - 2 AB AP cos(30°+θ)
  = 5 - 4 cos(30°+θ),
CP^2 = AC^2 + AP^2 - 2 AC AP cos(30°-θ)
  = 5 - 4 cos(30°-θ),
辺々掛けて
(BP・CP)^2 = {5-4 cos(30°+θ)} {5-4 cos(30°-θ)}
  = 21 - (5√3)(4 cosθ) + (4 cosθ)^2   (和積公式 と 積和公式)
  = 3 - (3√3 - 4 cosθ) (4 cosθ - 2√3)
  < 3,           2√3 < 4 cosθ ≦ 4,
BP・CP < √3 = 1.7320508  (上限)
最大値はない。
最小値は 5-2√3 = 1.5358984  (θ=0)
831132人目の素数さん
2024/05/04(土) 16:03:12.87ID:ft2h0fgD
>>816

log[10](3^2024) = 2024*log[10](3)
 = 2024 * 0.47712125472…
 = 965.693419552596773…

3^2024 = 10^0.693419552596773… × 10^965
    = 4.9365046745249376688… × 10^965
832132人目の素数さん
2024/05/04(土) 16:40:07.98ID:okvy3DjX
>>829
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
傑作であれば前者の面白い~へお願いします
833132人目の素数さん
2024/05/04(土) 16:49:19.61ID:4JosU2xG
>>832
残念
既に解答されました~(笑)
834132人目の素数さん
2024/05/04(土) 17:40:08.43ID:ft2h0fgD
>>817
2024_h = 8228,

2024_h * log(3)/log(16) = 3260.267863983418265250341…

3^{2024_h}
= 16^{0.267863983418265250341…} × 16^{3260}
= 2.101553135116828329… × 16^{CBC_h}
= 2.19FF62E222…_h × 16^{CBC_h}
835132人目の素数さん
2024/05/04(土) 18:17:53.58ID:20BaOEC/
>>829
変数が1つなので計算は楽だな。
最小になるときのPの位置をR言語で作図。
Gは重心。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
836132人目の素数さん
2024/05/04(土) 18:19:14.42ID:20BaOEC/
∠PABを横軸、縦軸にBP*CPをとってグラフ化
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
837132人目の素数さん
2024/05/04(土) 18:25:05.14ID:20BaOEC/
>>834
想定解通りです。
先頭数字は十六進法で2、十進法で5
838132人目の素数さん
2024/05/04(土) 19:18:50.52ID:RS+aZjjf
>>829
Rでの数値解
> f=\(th){
+ A=0i
+ B=2+0i
+ C=1+1i*sqrt(3)
+ P=cos(th)+1i*sin(th)
+ abs(B-P)*abs(C-P)
+ }
> curve(f,0,pi/3)
> optimize(f,c(0,pi/3))
$minimum
[1] 0.5235988

$objective
[1] 1.535898

> f(0)
[1] 1.732051
> f(pi/3)
[1] 1.732051

Wolfram言語での厳密解
Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= f[x_] := EuclideanDistance[{2,0},{Cos[x],Sin[x]}]*EuclideanDistance[{1,Sqrt[3]},{Cos[x],Sin[x]}]

In[2]:=
In[2]:= Minimize[{EuclideanDistance[{2,0},{Cos[x],Sin[x]}]*EuclideanDistance[{1,Sqrt[3]},{Cos[x],Sin[x]}],0<=x && x<=Pi/3},x]

Pi
Out[2]= {5 - 2 Sqrt[3], {x -> --}}
6

In[3]:= Maximize[{EuclideanDistance[{2,0},{Cos[x],Sin[x]}]*EuclideanDistance[{1,Sqrt[3]},{Cos[x],Sin[x]}],0<=x && x<=Pi/3},x]

Out[3]= {Sqrt[3], {x -> 0}
839132人目の素数さん
2024/05/04(土) 20:11:47.28ID:Yc1P4ABJ
>>838
誘導
【R言語】統計解析フリーソフトR 第7章【GNU R】
http://2chb.net/r/math/1658084535/
WolframAlphaを使いこなしてる人ってカッコイイ.....
http://2chb.net/r/math/1623024247/
840132人目の素数さん
2024/05/04(土) 20:47:35.25ID:mPgZVMGv
せっかく誘導しても日本語通じないチンパンには無駄みたいだねw
841132人目の素数さん
2024/05/04(土) 21:32:23.12ID:d2dnHOYA
>>839
Rのスレは既に利用している。
罵倒厨もいなくて的確なレスがくるね。
医師板まで出張して荒らしている、ここの罵倒厨が荒らしにくるかもしれんが。
842 警備員[Lv.7][新初]
2024/05/04(土) 21:36:56.23ID:w4NQBhtZ
>>783
公式の導出から
易しく広く解説してある
本がいいです
843132人目の素数さん
2024/05/04(土) 21:45:59.81ID:DgIThH2H
書き込んだから何だってんだよ
スレの趣旨から大きく外れてる書き込みしてることには変わりないだろ
とっとと出てけ!
844132人目の素数さん
2024/05/04(土) 21:48:22.11ID:d2dnHOYA
>>839
目指せ、両刀使い!

WolframのIntegerDigitsをRに移植
IntegerDigits=\(n,b) n%/%b^(floor(log(n)/log(b)):0) %% b

> IntegerDigits(3^26,10)
[1] 2 5 4 1 8 6 5 8 2 8 3 2 9
> IntegerDigits(3^26,16)
[1] 2 4 15 13 3 0 2 7 15 14 9

照合

Wolfram Language 14.0.0 Engine for Microsoft Windows (64-bit)
Copyright 1988-2023 Wolfram Research, Inc.

In[1]:= IntegerDigits[3^26,10]

Out[1]= {2, 5, 4, 1, 8, 6, 5, 8, 2, 8, 3, 2, 9}

In[2]:= IntegerDigits[3^26,16]

Out[2]= {2, 4, 15, 13, 3, 0, 2, 7, 15, 14, 9}


17桁を越えるとRは間違える
845132人目の素数さん
2024/05/04(土) 21:51:22.70ID:mPgZVMGv
>>841
スレチにわざわざ誘導してくれてるのが罵倒なのか?
被害妄想も大概にしろよw
846132人目の素数さん
2024/05/04(土) 21:54:03.00ID:d2dnHOYA
>>839
それはWolframAlphaのスレじゃん。
WolframScriptのコードをいれても計算してくれないぞ。
>321みたいな誤解をしてんじゃないの?
847132人目の素数さん
2024/05/04(土) 21:55:01.60ID:u/y1ognB
>>841
お前、ビビって医者板で何も書き込んでないみたいじゃん
無能のくせに偉そうやのう
848132人目の素数さん
2024/05/04(土) 22:00:52.57ID:mPgZVMGv
自称医科歯科出身の医者()であるにも関わらず何科が有名かの質問にすらダンマリ決め込んでる模様w
849132人目の素数さん
2024/05/04(土) 22:16:43.53ID:TZ0VBiIm
>>846はこのスレがWolframScriptのスレだと思ってる…ってコト!?
850132人目の素数さん
2024/05/04(土) 22:20:54.51ID:u/y1ognB
>>846
とりあえずスレ違いだから
消え失せて
851 【だん吉】
2024/05/05(日) 00:14:26.19ID:fCXOB8z9
>>747
>>829
図を描くと、
PがABの中点またはACの中点にあるときBP・CP=√3
Pが∠Aの垂直二等分線上にあるときピタゴラスの定理より、
BP=CP=5-2√3
∴5-2√3≦BP・CP≦√3
最大値は√3
852 【大吉】
2024/05/05(日) 00:16:43.26ID:fCXOB8z9
>>851訂正。
>>829
図を描くと、
PがABの中点またはACの中点にあるときBP・CP=√3
Pが∠Aの垂直二等分線上にあるときピタゴラスの定理より、
BP=CP=√(5-2√3)
∴5-2√3≦BP・CP≦√3
最大値は√3
853132人目の素数さん
2024/05/05(日) 00:39:35.06ID:uLb4iBun
>>849
そだね
854132人目の素数さん
2024/05/05(日) 10:59:16.77ID:zAUKO4xv
>>847
若い頃は連休は救急病院でバイトしていたけど、
今は家族とゆっくり過ごす。
医師が羨ましいなら再受験すればいいのに。
俺の同期は2~3割は再受験組だったな。
歯学部には東大数学科卒もいた。
855132人目の素数さん
2024/05/05(日) 11:51:22.78ID:mc/+5Cif
>>854
脳内医者いつになったらまともな書き込みできんだよw
856132人目の素数さん
2024/05/05(日) 13:27:35.07ID:crhOwNkH
>>854
ここは高校数学質問スレです
意味不明な書き込みは控えて下さい
857132人目の素数さん
2024/05/05(日) 13:33:21.77ID:IFtE60+o
>>830
△ABCの中心 (2/√3, 0) のまわりの円周(半径ρ)上にPをとる。
 P (2/√3 + ρ・cosφ, ρ・sinφ)
このとき
 AP・BP・CP = √{(464/27 + ρ^6) + (16/3√3)ρ^3・cos(3φ)},
858132人目の素数さん
2024/05/05(日) 15:50:17.35ID:EW9ukE5i
0 1 2 3 4 5 6 7 8 9 A J Q Kを使った十四進法を考える。
十四進法の分数1/2024を十四進法の小数で小数14位まで表せ。
(14は十進法の14の意)
859132人目の素数さん
2024/05/05(日) 16:13:31.20ID:plznTgC0
nを自然数の定数とする。
lim[x→0] {x^n-sin(xn)}/x^k
が0でない定数に収束するようなkをnで表せ。
860132人目の素数さん
2024/05/05(日) 16:14:10.84ID:2pjh8zeh
>>858
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
861132人目の素数さん
2024/05/05(日) 16:14:41.11ID:2pjh8zeh
>>859
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
862132人目の素数さん
2024/05/05(日) 16:51:42.18ID:bpHkLuqA
AI時代に従来の
プログラミングスキルは不要

プロンプトで指示さえすれば、
生成AIがプログラムを書く

これまでプログラミング言語と
縁がなかった文系人間にも
チャンスがある
863132人目の素数さん
2024/05/05(日) 17:35:35.57ID:EW9ukE5i
>858をChatGPTに入力したら誤答が返ってきた。
864132人目の素数さん
2024/05/05(日) 19:56:13.81ID:5EqNGnsT
>>859
sinnx~x
なんで
つまんないね
865132人目の素数さん
2024/05/05(日) 20:40:52.62ID:v90gvDzR
750:卵の名無しさん (JP 0H52-4JRL [217.138.212.122 [上級国民]]):[sage]:2024/05/05(日) 20:35:30.02 ID:94ULEsEqH
0 1 2 3 4 5 6 7 8 9 A J Q Kを使った十四進法を考える。
十四進法の分数1/2024を十四進法の小数で小数2024位まで表せ。

これ、誰かさんの"医者板"での書き込みです
板名すら理解できないアホがどうして医者や数学なんかできるんでしょうか?
866132人目の素数さん
2024/05/06(月) 00:57:05.88ID:pOat3wNb
>>858
2024_t = 5520,
1/2024_t = 1/5520
 = 0.000181159420289855072463768115942…
 = 0.0006D6091387C3007D4CA561ADD60913…_t
循環節の長さは 22 = 18_t 桁

0,1,2,3,4,5,6,7,8,9,A,B,C,D を使った。
_t は tetradecimal
867132人目の素数さん
2024/05/06(月) 05:21:01.04ID:xxhQy/YG
>>858
R言語による計算
> f=\(m=14,n=2024){
+ sn=n%/%10^(floor(log(n)/log(10)):0) %% 10
+ a=1/sum(14^((length(sn)-1):0)*sn)
+ s=c('1','2','3','4','5','6','7','8','9','A','J','Q','K','0')
+ cat('0.')
+ for(i in 1:m){
+ cat(s[ifelse(floor(a*14^i),floor(a*14^i),14)])
+ a = a - (14^-i)*floor(a*14^i)
+ }
+ cat('\n')
+ }
> f(14)
0.0006K6091387Q3
868132人目の素数さん
2024/05/06(月) 05:48:05.53ID:xxhQy/YG
>>865
Wolfram言語による解法

a=1/(14^^2024);
m=2024;
re={};
For[i=1,i<m,i++,(re=Append[re,Floor[a*14^i]]; a=a-(14^-i)*Floor[a*14^i];)];
f[x_] := If[x==0,"0",{"1","2","3","4","5","6","7","8","9","A","J","Q","K"}[[x]]]
StringJoin["0.",f /@ re]

出力結果は底辺シリツ医スレに掲載
http://2chb.net/r/hosp/1705363640/754

Wolfram言語の使える東大合格者の方の検証and/or最適化を希望します。
869132人目の素数さん
2024/05/06(月) 06:10:23.25ID:xxhQy/YG
R言語でプログラムを作ってWolfram言語の同等機能関数(paste0はStringJoinなど)を検索して移植すると
ForやIfを含むコードになるなぁ。Table関数とかが操れるとWolframぽいのだが。
870132人目の素数さん
2024/05/06(月) 06:43:25.09ID:xxhQy/YG
>>868
検索していたらRealDigitsという関数あったので、これを使って
2行に短縮

f[x_] := If[x==0,"0",{"1","2","3","4","5","6","7","8","9","A","J","Q","K"}[[x]]];
StringJoin["0.",f /@ RealDigits[1/(14^^2024),14,2024][[1]]]
871132人目の素数さん
2024/05/06(月) 06:54:21.98ID:xxhQy/YG
可読性を無視して無理やり1行に纏める。

StringJoin["0.",If[#==0,"0",{"1","2","3","4","5","6","7","8","9","A","J","Q","K"}[[#]]]& /@ RealDigits[1/(14^^2024),14,2024][[1]]]

出力結果の始めを抜粋
In[1]:= StringJoin["0.",If[#==0,"0",{"1","2","3","4","5","6","7","8","9","A","J","Q","K"}[[#]]]& /@ RealDigits[1/(14^^2024),14,2024][[1]]]

Out[1]= 0.6K6091387Q3007K4QA561AKK6091387Q3007K4QA561AKK6091387Q3007K4QA561AKK6091387Q3007K4QA561AKK6091387Q3007K4QA56\
872132人目の素数さん
2024/05/06(月) 07:48:34.26ID:6QrZPKCt
>>868
あんた、こんなヒドいスレ立ててる人なんだね
チラって見たけど、みんなに馬鹿にされてるし内容も医者板で書く内容じゃないし何がしたいん?
873132人目の素数さん
2024/05/06(月) 08:12:17.65ID:xxhQy/YG
>>872
m3など医師掲示板はシリツのネタは常に繁盛している
小学生新聞でもとりあげられる日本の常識。
https://www.asagaku.com/jkp/2002/7/jkp7_6.html
874132人目の素数さん
2024/05/06(月) 08:17:05.04ID:xxhQy/YG
真実を公言した東大卒の才媛は追い詰められたようだ。
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
875132人目の素数さん
2024/05/06(月) 08:29:20.28ID:xxhQy/YG
nを正整数とする。n=97のとき1/n=1/97は96桁の循環節になることが知られている。
(1) 96桁超過の循環節をとる1/nでnの最小値を求めよ。
(2) 循環節が1万を越えるのはnの最小値を求めよ。
あらゆるフリーリソースを用いてよい。
876132人目の素数さん
2024/05/06(月) 08:33:00.84ID:xxhQy/YG
nを正整数とする。n=97のとき1/n=1/97は96桁の循環節になることが知られている。
(1) 96桁超過の循環節をとる1/nでnの最小値を求めよ。
(2) 循環節が1万を越えるnの最小値を求めよ。
あらゆるフリーリソースを用いてよい。
877132人目の素数さん
2024/05/06(月) 09:00:06.84ID:DZSXBpUC
>>867
誘導
【R言語】統計解析フリーソフトR 第7章【GNU R】
http://2chb.net/r/math/1658084535/
878132人目の素数さん
2024/05/06(月) 09:01:03.65ID:K4hWWTPw
>>872
リアルでは誰も相手してくれないから5chでバカにされたいよです
879132人目の素数さん
2024/05/06(月) 09:03:37.60ID:DZSXBpUC
>>868
誘導
〓 Mathematica 捌 〓
http://2chb.net/r/math/1664588217/
880132人目の素数さん
2024/05/06(月) 09:05:12.66ID:DZSXBpUC
>>872
高校数学の質問スレで延々とスレ違いの書き込み続けるくらいだし、
あもありなんとしか
881132人目の素数さん
2024/05/06(月) 09:05:27.39ID:K4hWWTPw
尿瓶ジジイID:xxhQy/YGはいつまで経ってもスレチという概念が理解できないチンパンジーみたいだね
もはや病気だよ、てか統失
そんなのが東大とか笑わせる
882132人目の素数さん
2024/05/06(月) 09:06:05.21ID:DZSXBpUC
>>875,876
誘導
面白い数学の問題おしえて~な 43問目
http://2chb.net/r/math/1696639819/
くだらねぇ問題はここへ書け
http://2chb.net/r/math/1412425325/
883132人目の素数さん
2024/05/06(月) 09:33:00.69ID:HTvZ5yNF
一辺の長さが1の正三角形ABCの内部に点Pをとり、∠APB=120°となるようにする。
PのABに関する対称点をQとするとき、QA+QB+QCの取りうる値の範囲を求めよ。
884132人目の素数さん
2024/05/06(月) 09:35:17.47ID:xxhQy/YG
練習問題

十進法で1/2024で表される数値を二進法の小数で表すとき
(1) 循環節は何桁の数字になるか?
(2) 循環節を列挙せよ。
あらゆるフリーリソースを用いてよい。

(参考にならない資料)
1/2024(十進法) =
0.00000000001000000110000100100011011010100011111010111100001101001001110111011001100011001010
01011111000111010101100000001000000110000100100011011010100011111010111100001101001001110111011001
10001100101001011111000111010101100000001000000110000100100011011010100011111010111100001101001001
11011101100110001100101001011111000111010101100000001000000110000100100011011010100011111010111100
00110100100111011101100110001100101001011111000111010101100000001000000110000100100011011010100011
11101011110000110100100111011101100110001100101001011111000111010101100000001000000110000100100011
01101010001111101011110000110100100111011101100110001100101001011111000111010101100000001000000110
00010010001101101010001111101011110000110100100111011101100110001100101001011111000111010101100000
00100000011000010010001101101010001111101011110000110100100111011101100110001100101001011111000111
01010110000000100000011000010010001101101010001111101011110000110100100111011101100110001100101001
011111000111010101100000001000000110.....
885132人目の素数さん
2024/05/06(月) 09:39:26.96ID:6QrZPKCt
>>873
それが日本の常識とかモラルのある医者が書く内容じゃないだろ
886132人目の素数さん
2024/05/06(月) 09:39:57.63ID:K4hWWTPw
>>884
アンタはいつになったら板名やスレタイ、というか日本語理解できるのアホ尿瓶ジジイ
65過ぎても理解できないなら一生無理ってこと?
887132人目の素数さん
2024/05/06(月) 10:06:24.92ID:xxhQy/YG
>>885
不正入試で除籍になったシリツ医大生は皆無。
∴ シリツ医=裏口容疑者という結論になる。
888132人目の素数さん
2024/05/06(月) 10:07:51.77ID:K4hWWTPw
>>887
相変わらず日本語通じてないみたいだね
アンタがモラルのない(脳内)医者だって言ってんだよアホがw
889132人目の素数さん
2024/05/06(月) 10:46:25.24ID:xxhQy/YG
>>883
Rによる数値解

> f(max,TRUE)
[1] 2.309401
> min=optimise(f,c(-150/180*pi,-30/180*pi),maximum=FALSE)$minimum
> f(min,TRUE)
[1] 2.000026
890132人目の素数さん
2024/05/06(月) 10:51:43.45ID:6QrZPKCt
>>887
そんなに私立医の人を目の敵してるってことは医学部受験失敗したニートか
もしくはルシファー的存在?
だから数学板でわけわかんないこと書き込んでるの?
891132人目の素数さん
2024/05/06(月) 11:12:24.88ID:xxhQy/YG
>>889
厳密値を出すためにRのコードをWolframに移植。

f[t_] :=(
r=1/Sqrt[3];
Q={r*Cos[t],r*Sin[t]};
A1={r*Cos[-(5/6)Pi],r*Sin[-(5/6)Pi]};
B1={r*Cos[-Pi/6],r*Sin[-Pi/6]};
C1={0,r};
EuclideanDistance[Q,A1]+EuclideanDistance[Q,B1]+EuclideanDistance[Q,C1]
)


In[7]:= f[t_] :=(
r=1/Sqrt[3];
Q={r*Cos[t],r*Sin[t]};
A1={r*Cos[-(5/6)Pi],r*Sin[-(5/6)Pi]};
B1={r*Cos[-Pi/6],r*Sin[-Pi/6]};
C1={0,r};
EuclideanDistance[Q,A1]+EuclideanDistance[Q,B1]+EuclideanDistance[Q,C1]
)

In[8]:= Minimize[{f[t],-(5/6)Pi<=t && t<= -Pi/6},{t}]

-5 Pi
Out[8]= {2, {t -> -----}}
6


In[9]:= Maximize[{f[t],-(5/6)Pi<=t && t<= -Pi/6},{t}]



4 1
Out[9]= {-------, {t -> -(-) Pi}}
Sqrt[3] 2

最小値2
最大値 4/sqrt(3)=2.309401

Rでの数値解とほぼ一致。
Wolfram Scriptの演習になった。
892132人目の素数さん
2024/05/06(月) 11:15:33.00ID:xxhQy/YG
>>890
そういう医師を羨むレスは不要なので答合わせしたいから>884の答を出してくれ。
0と1の数列でどこが循環節なのか確信できないので。
東大合格者なら計算できるはず。
893132人目の素数さん
2024/05/06(月) 11:26:04.31ID:xxhQy/YG
>>883
一辺の長さが1の正三角形ABCの内部に点Pをとり、∠APB=120°となるようにする。
PのABに関する対称点をQとするとき、QA+QB+QCの取りうる値の範囲を求めよ。

Microsoftのcopilotに入力した結果
>このようにして、QA+QB+QCの取りうる値の範囲は、[QA + QB + QC = AP + BP + PC = 1 + 2 + \sqrt{3} = 3 + \sqrt{3}] です。

ChatGPTに入力した結果
>ABCが正三角形であるため、BCの長さは1となります。したがって、QA+QB+QCの最小値は1/2、最大値は2となります。

俺の答とは異なるなぁ。
東大合格者による検証を希望します。
894132人目の素数さん
2024/05/06(月) 11:31:24.20ID:xxhQy/YG
>>884
十進法で1/2024で表される数値を二進法の小数で表すとき
(1) 循環節は何桁の数字になるか?
(2) 循環節を列挙せよ。
をcopilotとChatGPTに入力してみた。

Copilot
>したがって、1/2024を二進法の小数で表すと、循環小数「0.00049407…」の循環節は「49407」です。


CHatGPT
>同様にして計算を続けると、循環節が現れるまでに時間がかかりますが、おおよそ 1024 桁程度で周期性が現れます。これは 1/1024 の場合と同様の循環節です。

循環節を列挙すると、0.000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
1/2024の二進法の小数表記について、循環節は1024桁で周期性が現れます。循環節は列挙すると、非常に長くなりますが、周期的なパターンが現れることがわかります。

どちらも使い物にならんな。
895132人目の素数さん
2024/05/06(月) 11:34:40.69ID:xxhQy/YG
>>884
ChatGPTの答

与えられた二進数の列は非常に長く、循環節がどこにあるのかを素早く特定するのは難しいです。
循環節を見つけるためには、一般的には次のような手順を取ります。
(以下略)
896132人目の素数さん
2024/05/06(月) 11:37:49.56ID:5/oxhoJF
|x+1| + |x-2|= x + 2 を解きなさい
897132人目の素数さん
2024/05/06(月) 11:41:28.24ID:lw/xQ19x
尿瓶よりは有能
898132人目の素数さん
2024/05/06(月) 12:07:52.61ID:xxhQy/YG
尿瓶チンパンフェチのPhimoseくんがサクッと答をだせばいいと思うのに
悲しいかな東大合格者じゃないから、RもPythonの使えないみたいだなぁ。
899132人目の素数さん
2024/05/06(月) 12:14:32.60ID:6QrZPKCt
>>898
ここは高校数学質問スレなんだけど
お前のオナニー問題を解かせるスレじゃねーから

ほら、立ててやったからそこにいくらでも書き込んでいいぞ
もうこのスレ来んなよスレ違いだから

東大合格者に問題を検証してらうスレ
http://2chb.net/r/math/1714965157/
900132人目の素数さん
2024/05/06(月) 13:15:06.21ID:xxhQy/YG
>>896
ChatGPTが1つだけ答を返してきた。
copilotは完全な誤答を返してきた。
901132人目の素数さん
2024/05/06(月) 13:17:06.50ID:xxhQy/YG
>>899
やはり、東大合格者じゃなかったようだな。
合格通知の書式すら知らなかったからなぁ。
どこのシリツなんだ?
902132人目の素数さん
2024/05/06(月) 13:24:30.63ID:6QrZPKCt
>>901
そりゃ高校生だからな
むしろお前こそ何でここいんの?
903132人目の素数さん
2024/05/06(月) 13:28:57.02ID:6QrZPKCt
>>901
お前みたいなGWに5chに常駐するような
寂しい大人には絶対なりたくないな
お前が医者だと言うのも正直怪しい
もっと医者賢いだろ
904132人目の素数さん
2024/05/06(月) 13:51:24.88ID:yOHp/61T
高校生でもなく質問に答えるでもなく、
スレ違いの書き込みばっかりするじいさんって惨めだな
高校数学スレでしかイキれない、
純粋数学は理解できないってことだろうし
905132人目の素数さん
2024/05/06(月) 14:06:03.16ID:/2D2N2jA
>>900
アンタと同じくらいポンコツだね
高校生にバカにされて楽しいか?w
906132人目の素数さん
2024/05/06(月) 14:17:12.48ID:/2D2N2jA
>>903
あまりご存知ないようなので一応説明しておきます
こいつID:xxhQy/YGは医者板と数学板に長年(少なくとも9年以上)粘着している自称医科歯科卒()の脳内医者の荒らし、通称尿瓶ジジイです
907132人目の素数さん
2024/05/06(月) 14:17:33.19ID:YXoHJsx4
働いてすらいないわなwww
908132人目の素数さん
2024/05/06(月) 15:03:03.55ID:HZysJS8n
>>901
東大合格者を求めるなら高校数学スレよりふさわしいスレいくらでもあるでしょ
そういうことにすら思い至らないのは頭が悪いだけだよね
909132人目の素数さん
2024/05/06(月) 15:10:15.26ID:b9na0z7s
皆さまに厳選質問にご回答していただくためには何が必要ですか。
910132人目の素数さん
2024/05/06(月) 15:16:46.79ID:xxhQy/YG
>>884
循環節を計算するR言語のスクリプト
d=unlist(read.csv('10000.csv',header = FALSE))
f=\(x){
u=d[1:x]
n=length(d)%/%x
all(rep(u,n)==d[1:(x*n)])
}
y=sapply(1:1000,f)
which(y)

これを移植

循環節を計算するWolfram言語のスクリプト
d=RealDigits[1/2024,2,10000][[1]];

f[x_] := (
u=d[[1;;x]];
n=Floor[Length[d]/x];
Flatten[Table[u,n]]==d[[1;;(x*n)]]
)
Select[Range[1000],f]

答が出せた。数字が01だけなので目視で循環節の見当をつけるのは至難の技。
東大合格者の解答が投稿されたら照合の予定。
911132人目の素数さん
2024/05/06(月) 15:41:01.43ID:/2D2N2jA
>>910
無職さん一生レス乞食やってなw
912132人目の素数さん
2024/05/06(月) 17:01:29.88ID:EucrUAT8
For[a=1/2024;buff={},FreeQ[buff,a],a=FractionalPart[2*a],AppendTo[buff,a]];
Length[buff]-Position[buff,a][[1]][[1]]+1
110
913132人目の素数さん
2024/05/06(月) 17:02:24.72ID:nXBFEhxt
>>910
東大合格者に問題を検証してらうスレ
http://2chb.net/r/math/1714965157/
ここ行け
914132人目の素数さん
2024/05/06(月) 17:33:44.28ID:xxhQy/YG
循環節ネタの練習問題

pを7以上の素数とする(10の約数2,5を除くための制約)。
1/pを十進数で小数表示したときの循環節の長さはp-1の約数であるという。
10000個の素数でこれを体感してみよ。
915132人目の素数さん
2024/05/06(月) 17:46:01.71ID:/2D2N2jA
>>914
体感してみる?はあ?w
それが数学の問題って言い張るわけ?
一体誰に向かって話してんだ?バカも休み休み言えよw
916132人目の素数さん
2024/05/06(月) 17:49:14.11ID:xxhQy/YG
>>912
レスありがとうございます。
想定解110と合致しました。
917132人目の素数さん
2024/05/06(月) 18:55:40.96ID:IGxWlKVi
>>909
然るべきスレに書き込むことが必要です
918132人目の素数さん
2024/05/06(月) 20:17:33.31ID:/2D2N2jA
>>916
チンパン以下の自演が寒すぎる笑
919132人目の素数さん
2024/05/06(月) 20:33:15.13ID:NGHZ7JXH
y=sin(π/2)に対し、
∫[0,1] y dx
を求めよ。
920132人目の素数さん
2024/05/06(月) 20:36:38.53ID:pOat3wNb
>>884

(1)
1/2024 = (1/8)(1/253)
 = (1/8)・5130728121081845482737644594091/(2^110-1),
∴ 循環節の長さ 110桁   (>>912と一致)

(2)
0.000
「0000000100 0000110000 1001000110 1101010001
1111010111 1000011010 0100111011 1011001100
0110010100 1011111000 1110101011」
「…」を繰り返す。
921132人目の素数さん
2024/05/06(月) 21:41:53.53ID:pOat3wNb
>>883
 △ABCの外接円の中心をOとする。半径 R=1/√3,
 A (R/2, 1/2)
 B (R/2, -1/2)
 C (-R, 0)

題意より ⊿AQB ≡ ⊿APB,
∴ ∠AQB = ∠APB = 120° = 180°-∠C,
∴ Q は ABCの外接円上にある。
 Q (R・cosθ, R・sinθ)   -60°<θ<60°

∠AOQ = 60°-θ,
∠BOQ = 60° + θ,
∠COQ = 180°-θ,

AQ + BQ + CQ
 = 2R{sin(30°-θ/2) + sin(30°+θ/2) + cos(θ/2)}
 = 2R{cos(θ/2) + cos(θ/2)}    ← 和積公式
 = 4R cos(θ/2),

最大値 4/√3  (θ=0)
最小値 2   (θ=±60°)
922イナ ◆/7jUdUKiSM
2024/05/07(火) 02:22:18.62ID:7yMMsxnQ
>>852
>>883
maxQC=(√3/2)×(4/3)=2√3/3
maxQA=maxQB=(√3/2)×(2/3)=√3/3
max(QA+QB+QC)=√3/3+√3/3+2√3/3=4√3/3
min(QA+QB+QC)=0+1+1=2
∴2≦QA+QB+QC≦4√3/3
923132人目の素数さん
2024/05/07(火) 05:31:13.42ID:H7owo3Tu
>>912
知らない関数がでてきたので仕様と解法のアルゴリズムを理解するために、
小さな数にして途中経過を表示させてみました。

For[a=1/6;buff={},FreeQ[buff,a],a=FractionalPart[2*a],Print[FreeQ[buff,a]];Print[a];Print[buff];AppendTo[buff,a];Print[buff];Print["\n"]]
FreeQ[buff,a]
a
buff
Position[buff,a]
Length[buff]-Position[buff,a][[1]][[1]]+1

エレガントな解法に感服。
他の人のコードを読むのは勉強になります。
今後とも御助言をよろしくお願いします。
924132人目の素数さん
2024/05/07(火) 06:23:54.09ID:H7owo3Tu
>>923
正しく理解できているかを確認のために>912の神スクリプトをRに移植。
Rは分数のままでは扱えないので文字列と数字の変換操作を組み込んでコードした。

a="1/2024"
buff=NULL
while(!(a %in% buff)){
buff=c(buff,a)
a |> str2lang() |> eval() -> b
(2*b - floor(2*b)) |> MASS::fractions() |> as.character() -> a
}
length(buff) - which(buff==a) + 1

結果
> length(buff) - which(buff==a) + 1
[1] 110
925132人目の素数さん
2024/05/07(火) 07:40:30.08ID:YxrXTNmg
>>910
東大合格者が「高校数学」の質問スレに顕れるはずないだろ
何も書き込まず永遠に待ち続けてろ
926132人目の素数さん
2024/05/07(火) 08:06:57.52ID:H7owo3Tu
>>925
東大合格通知を受け取ったことないの?
ハガキ大で公印も押されてなくて有り難みのない書式だったぞ。
927132人目の素数さん
2024/05/07(火) 08:12:17.97ID:hmx04nf+
>>926
だから何?wそれが何の証明になるんだよ
アンタがそれに及ばないアホってことくらいみんな知ってるぞ?
928132人目の素数さん
2024/05/07(火) 08:24:51.87ID:OWQ6igFJ
>>926
受け取ったことなんてあるはずないだろ
共通テストすらまだまだ先の高一なんだからさ
受け取ったことある人探してるなら他行った方が効率いいのに何でそうしないの?
スレタイ読めないの?
929132人目の素数さん
2024/05/07(火) 08:41:08.57ID:H7owo3Tu
>>927
やっぱり、受け取ったことないの?
930132人目の素数さん
2024/05/07(火) 09:07:16.40ID:WyT6FCmf
>>924
分数が扱えないなら、リストへのアクセス時は、整数にしておけば良い
For[a=1/2024;b=1/a;buff={},FreeQ[buff,a*b],a=FractionalPart[2*a],AppendTo[buff,a*b]];
Length[buff]-Position[buff,a*b][[1]][[1]]+1

最初から2024倍したものを扱うことにすれば
For[a=1;b=2024;buff={},FreeQ[buff,a],a=Mod[2*a,b],AppendTo[buff,a]];
Length[buff]-Position[buff,a][[1]][[1]]+1

というわけで、極めて一般的な進法変換アルゴリズムに帰着。スタート地点はこれ。
エレガントな訳が無い。
931132人目の素数さん
2024/05/07(火) 09:15:31.56ID:sUVPXx9P
>>929
受け取ったことないね
まだ高校生だから
で、匿名掲示板でそれが東大合格の証明になるとでも?
932132人目の素数さん
2024/05/07(火) 09:42:01.31ID:mz0GVLy8
>>900 chatgpt4.0なら、間違えないんだろうか?
933132人目の素数さん
2024/05/07(火) 11:28:34.10ID:b9gnjkXf
I[n] = ∫[1,e] (x^n)*(logx) dx
とする。

(1)I[1]を求めよ。

(2)I[n+1]をI[n],...,I[1]のうち必要なもので表せ。

(3)I[5]を求めよ。
934132人目の素数さん
2024/05/07(火) 15:18:32.35ID:kOLMFY+x
>>930
Rは不定長整数に非対応。分母分子が大きくなると誤差がでてくる。
22桁までは表示してくれるが、あとは1.234567890.... e10とかいう表示法になる。
935132人目の素数さん
2024/05/07(火) 15:33:47.02ID:F+MudCW0
>>723
怒涛のwolfram一行入力

5×6の場合
宝:1個 同等
宝:2~8個 短軸有利
宝:9~21個 長軸有利
宝:22~30個 同等

□■■■■■
□□■■■■
□□□■■■
□□□□■■
□□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,n-2 mod7)+3C(0,n-4)+C(1,n-7),k-1),{n,1,14}],{k,1,30}]

長軸有利☆

Table[sum[C(2n-1+C(0,30mod n)-C(0,n-2)-2C(0,n-5)-C(1,n-8),k-1),{n,1,14}],{k,1,30}]

同等☆

Table[sum[C(2n-1-3C(1,n-9),k-2),{n,9,14}],{k,1,30}]+Table[C(29,k-1)+C(1,k),{k,1,30}]
936132人目の素数さん
2024/05/07(火) 16:03:18.69ID:OgbPgxVI
部分積分で
∫ (x^n) log(x) dx
 = (1/(n+1)) x^{n+1} log(x) - (1/(n+1))∫ x^n dx
 = x^{n+1}((n+1)log(x)-1)/(n+1)^2,

x^{n+1} = u とおくと
∫ (x^n) log(x) dx
 = (1/(n+1)^2) ∫ log(u) du
 = u(log(u)-1)/(n+1)^2
 = x^{n+1}((n+1)log(x)-1)/(n+1)^2,

x=e^t とおくと
∫ (x^n) log(x) dx = ∫ e^{(n+1)t}・t dt
 = (1/(n+1))e^{(n+1)t}・t - (1/(n+1))∫ e^{(n+1)t} dt
 = e^{(n+1)t}((n+1)t-1)/(n+1)^2
 = x^{n+1}((n+1)log(x)-1)/(n+1)^2,

∴ I[n] = (n・e^{n+1} +1)/(n+1)^2,

(1) I[1] = (ee+1)/4 = 2.097264…
(2)
(3) I[5] = (5e^6 +1)/36 = 56.059555…
937132人目の素数さん
2024/05/07(火) 16:06:36.52ID:F+MudCW0
>>743
100円の商品を50円引きで買うと
50%の得

200円の商品を50円引きで買うと
25%の得

200円の商品を100円引きで買うと
50%の得

200円の商品購入時に
100円の商品の2倍の便益を得る
とすると

どちらも損得はないので③
938132人目の素数さん
2024/05/07(火) 18:00:43.13ID:OgbPgxVI
>>936
nを実数として
 (∂/∂n) x^n = (∂/∂n) e^{n・log(x)}
  = e^{n・log(x)}・log(x)
  = (x^n) log(x),

I[n] = ∫[1,e] (∂/∂n) x^n dx
 = (d/dn)∫[1,e] x^n dx
 = (d/dn) [ x^{n+1} /(n+1) ](x:1→e)
 = (d/dn) (e^{n+1}-1)/(n+1)
 = (n・x^{n+1}-1)/(n+1)^2,
939132人目の素数さん
2024/05/07(火) 18:08:35.51ID:ztlCxBgs
これだけ無駄口叩いて偉そうにしてるスレ違い続ける奴、
>>782の質問に誰も答えないのな
質問だけだと過疎スレになるとか言いつつ、
やってることは質問を埋もれさせて質疑応答を成り立たせない荒らしでしかない
940132人目の素数さん
2024/05/07(火) 18:48:42.26ID:Qu5ZrnNw
リチャードファインマンの
『経路積分と量子力学』
941132人目の素数さん
2024/05/07(火) 20:02:47.44ID:Qu5ZrnNw
◆予算は200円, 50円引きクーポン一枚

100円の商品二つをクーポン一枚で
購入すると、支払いは150円

200円の商品一つをクーポン一枚で
購入すると、支払いは150円


どちらも支払い総額が同じなので③
942132人目の素数さん
2024/05/07(火) 20:14:05.61ID:OgbPgxVI
>>938
最後の行
 = (n・e^{n+1} +1)/(n+1)^2,
でした。
943132人目の素数さん
2024/05/07(火) 20:30:48.09ID:OgbPgxVI
>>921
θ/2 方向の単位ヴェクトルをeとすると、
↑OA・e = R cos(60°-θ/2) = R sin((60°+θ)/2) = BQ/2,
↑OB・e = R cos(60°+θ/2) = R sin((60°-θ)/2) = AQ/2,
↑OC・e = -R cos(θ/2) = -R sin(90°-θ/2) =-CQ/2,
辺々たすと
∴ 0 = AQ + BQ -CQ,
∴ AQ + BQ + CQ = 2CQ.
944132人目の素数さん
2024/05/07(火) 20:49:25.33ID:8fDbvOH9
初歩的なすみませんですみません
この方程式の分母を払うとありますが具体的にどんな手順で進めればいいでしょうか?
最初の3(sθ-cθ)=sθ+cθへの式が形自体はわかるのですが、どことどこを掛けているのかわかりません
またsin/cos=tanθの公式はわかりますがそこからなぜ2と求められるのか理解できません

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
945132人目の素数さん
2024/05/07(火) 23:53:44.60ID:OgbPgxVI
=====●ここでチャレンジ!演習問題●=====
No.1
 (sinθ-cosθ)/(sinθ+cosθ) = 1/3 のとき、tanθの値として正しいものは
次のうちどれか。
正答: 2
解説:与式の分母を払う。
 (sinθ-cosθ)/(sinθ+cosθ) = 1/3,
 3(sinθ-cosθ) = sinθ + cosθ,
 2sinθ = 4cosθ,
両辺を 2cosθ でわると、
 sinθ/cosθ = 2,
よって
 tanθ = 2,
-------------------------------------------------------------

・「分母を払う」とは、一辺の分母を両辺に掛け、
それによって反対の辺に移すことです。
al gabr ともいいます。
解説では、左辺の分母 sinθ+cosθ と 右辺の分母 3 を
同時に払っています。
946132人目の素数さん
2024/05/08(水) 00:09:23.03ID:r6jtoBaY
(sinθ-cosθ)/(sinθ+cosθ) = 1/3,
 
3(sinθ-cosθ)/(sinθ+cosθ) = 1,

3(sinθ-cosθ) = (sinθ+cosθ),

3sinθ-3cosθ = sinθ+cosθ,

3sinθ-sinθ = 3cosθ+cosθ,

2sinθ = 4cosθ,

sinθ = 2cosθ,

sinθ/cosθ = 2,

tanθ = 2,
947132人目の素数さん
2024/05/08(水) 09:20:33.93ID:b5SPzEJZ
1より小さい分数 a を三進法で有効数字1000個で表示させたところ以下のようになった。
a の値となりうる分数をひとつ答えよ

0.00002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010

あらゆるフリーリソースを用いてよい。
948132人目の素数さん
2024/05/08(水) 09:35:25.61ID:Tk4OcJvs
>>947
で、何が質問なんだ?
自分の頭の悪さを評価してほしいの?
949132人目の素数さん
2024/05/08(水) 09:36:29.38ID:zjoCghB1
xy平面上の曲線C:y=sinxを考える。
Cのa≦x≦a+πの部分の長さをL(a)とする。
aを0≦a<2πを動く実数とするとき、L(a)の取りうる値の範囲を求めよ。
950132人目の素数さん
2024/05/08(水) 10:29:51.24ID:v2KqfhTl
最大値と最小値の差を求めよ
とかならよかったのにな
951132人目の素数さん
2024/05/08(水) 12:43:43.95ID:b5SPzEJZ
>>948
で、答は?
952132人目の素数さん
2024/05/08(水) 13:35:30.87ID:PF2QWNHC
ありがとうございます
何となく理解できたような気がします
両辺に3を掛けて右辺の分母を払い、その後左辺のsin+cosを両辺にかけると言う手順でよろしいのでしょうか?
√の有利化とごちゃまぜになって両辺にsin -cosを掛けていて全く式変形できなかったので止まっていました
953132人目の素数さん
2024/05/08(水) 13:54:56.05ID:Xak6Ai2d
>>951
日本語通じてないチンパン発見w
954132人目の素数さん
2024/05/08(水) 14:06:05.46ID:s+WGObly
>>951
答えが欲しいなら別のスレでやったほうがいいよ
955132人目の素数さん
2024/05/08(水) 14:09:03.24ID:Xak6Ai2d
尿瓶ジジイID:b5SPzEJZが建てたスレだからもう何言っても粘着するだろうから隔離スレ作るしかないかもね
956132人目の素数さん
2024/05/08(水) 14:17:16.64ID:pK/wXDEp
>>951
答えが知りたいならそう書けば?
日本語使えないクレクレ乞食なの?
957132人目の素数さん
2024/05/08(水) 15:20:54.80ID:Q+Icxp4f
>>944
グラフ化してTan[θ]=2を体感。
Jupyter経由でWolfram言語の練習
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
958132人目の素数さん
2024/05/08(水) 15:24:49.45ID:YaCX0nxt
>>951
ほらこのスレ行けよ
2度と出てくるなよ
東大合格者に問題を検証してもらうスレ
http://2chb.net/r/math/1714965157/
959132人目の素数さん
2024/05/08(水) 15:55:51.92ID:uTbc2nqO
√(√121 - √120)を簡単にせよ。
960132人目の素数さん
2024/05/08(水) 16:32:16.07ID:9b91wrP+
1/97 = 1/(10121_3)
  = 822334464710025874880/(3^48 -1)
  = 0.[0000211112 2020221212 2210222201 1110020200
     10100012_3]
 循環節の長さ: 48 = 1210_3
 _3 は ternal

1/97 = N/(10^97 -1)
  = 0.[0103092783 5051546391 7525773195 8762886597
     9381443298 9690721649 4845360824 7422680412
     3711340206 185567]
 循環節の長さ: 96
 N = 10309278350515463917525773195876288659793814432989690721649484536082474226804123711340206185567,
961132人目の素数さん
2024/05/08(水) 16:35:04.90ID:9b91wrP+

 1/97 = N/(10^96 -1)
でした。
962132人目の素数さん
2024/05/08(水) 16:47:18.61ID:9b91wrP+
>>959
√121 - √120 = 11 -2√30
 = 6 + 5 - 2(√6)(√5)
 = (√6 - √5)^2,

(与式) = √6 - √5,
963132人目の素数さん
2024/05/08(水) 16:52:21.30ID:Q+Icxp4f
>>947
眼力(良好な視力と記憶力)があれば、どこが循環節か見つけ出せるだろうけど。
プログラムの練習問題として使える。
不定長整数に非対応のRだと文字列として処理して算出。
Wolframだとそのあたりは効率がいい。

>952
θに惑わされるけど
cosθ=x
sinθ=y
tanθ=t
と置くと
y=tx
(sinθ-cosθ)/(sinθ+cosθ)=1/3
(y-x)/(y+x)=1/3
(tx-x)/(tx+x)=1/3
964132人目の素数さん
2024/05/08(水) 16:56:36.49ID:Q+Icxp4f
>>960
レスありがとうございます。
想定解通りです。

Wolfram言語の練習に自作して自答した問題です。

おまけ コードのサラダ

txt="0.00002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010001200002111122020221212221022220111100202001010
";
str=StringSplit[txt,"."][[2]];
str=StringSplit[str,""];
ls=Length[str];
d=str[[5;;ls]];
digits=1000;
f[x_] := (
u=d[[1;;x]];
n=Floor[Length[d]/x];
Flatten[Table[u,n]]==d[[1;;(x*n)]]
)
l=Select[Range[digits/2],f][[1]];(* l=48 *)

StringJoin[d[[1;;l]]]
nu=3^^211112202022121222102222011110020200101000120000;
IntegerString[(3^48-1)*3^4,3]
de=3^^2222222222222222222222222222222222222222222222220000;
nu/de
965132人目の素数さん
2024/05/08(水) 17:01:39.20ID:9b91wrP+
>>949
 dy/dx = cos(x),
L(a) = L(0)
 = ∫[0, π] √{1 + (dy/dx)^2} dx
 = ∫[0, π] √{1 + cos(x)^2} dx
 = (2√2)E(1/2)
 = 3.820197789…
第2種完全楕円積分と云うらしい。。。
966132人目の素数さん
2024/05/08(水) 17:43:03.02ID:Q+Icxp4f
>>949
Rで作図
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
967132人目の素数さん
2024/05/08(水) 17:49:56.49ID:Q+Icxp4f
>>944
cosθ ≠ 0 なら
(sinθ-cosθ)/(sinθ+cosθ) = 1/3

(tan(θ)-1)/(tan(θ)+1) = 1/3
の方がわかりやすいかもしれん。
968132人目の素数さん
2024/05/08(水) 19:41:00.14ID:Xak6Ai2d
ぶつぶつうるせーなチンパンジーが
969132人目の素数さん
2024/05/08(水) 19:51:05.91ID:s+WGObly
>>968
触れないのが正解
粛々とNG
970132人目の素数さん
2024/05/08(水) 19:52:24.90ID:s+WGObly
次スレ
高校数学の質問スレ Part435
http://2chb.net/r/math/1715164435/
971132人目の素数さん
2024/05/08(水) 20:21:47.83ID:Q+Icxp4f
>>935
Wolfram Scriptによるシミュレーションプログラム
 Wolfram言語の自習問題
*
宝は1マスに1個しか存在しないとする
5×6の場合
宝:1個 同等
宝:2~8個 短軸有利
宝:9~21個 長軸有利
宝:22~30個 同等

□■■■■■
□□■■■■
□□□■■■
□□□□■■
□□□□□■

*)
li=Range[30]; (* マスの番号 *)
(mat=Table[li[[6i-5;;6 i]],{i,1,5}]) // MatrixForm (* Matrix(1:30,nrow=5,ncol=6, byrow=TRUE)*)
short=Flatten[Table[mat[[All,i]],{i,6}]]; (* 短軸ルート 1,7,13,19,25,2,8,....,18,24,30 *)
long=li; (* 長軸ルート *)
sim[] := (
tre=RandomSample[li,RandomInteger[{1,30}]]; (* 30マス以下のマスに30個以下の宝をランダムに配置する *)
Max[Position[short,#]& /@ tre] - Max[tre] (* すべての宝を得るまでに探索したマスの数の差:短軸探索数-長軸探索数 *)
)
re=Table[sim[],1*^6];
Mean[Boole[# < 0 & /@ re]]//N (* 短軸有利割合 *)
Mean[Boole[# == 0 & /@ re]]//N (* 同等割合*)
Mean[Boole[# > 0 & /@ re]]//n (* 長軸有利割合*)

Mean[re] (* 総合判断 *)

Wolfram言語の使える方による推敲・最適化を期待します。
登録すれば無料で使えるので意欲的な高校生の参加も期待します。
医系ならR言語、理工系ならWolfram言語(Mathemaatica)は将来も役に立ちます。
972132人目の素数さん
2024/05/08(水) 20:24:55.33ID:Q+Icxp4f
Mean[Boole[# > 0 & /@ re]]//n (* 長軸有利割合*)

Mean[Boole[# > 0 & /@ re]]//N (* 長軸有利割合*)

Mean[re] (* 総合判断 *)

Mean[re] //N(* 総合判断 *)
973132人目の素数さん
2024/05/08(水) 20:41:53.56ID:9bl+/S29
医者板では全く相手にされずにここで高校生相手にマウントを取ろうとするも逆にけちょんけちょんにされるも何事もなかったかのようにチンパン数学を垂れ流しております
974132人目の素数さん
2024/05/08(水) 20:52:57.19ID:o+7mX6D2
>>971

5 * 6 [2] : 203 , 197 , 35
5 * 6 [3] : 1801 , 1727 , 532
5 * 6 [4] : 11418 , 11008 , 4979
5 * 6 [5] : 55469 , 54036 , 33001
5 * 6 [6] : 215265 , 211894 , 166616
5 * 6 [7] : 685784 , 680768 , 669248
5 * 6 [8] : 1827737 , 1825076 , 2200112
5 * 6 [9] : 4130886 , 4139080 , 6037184
5 * 6 [10] : 7995426 , 8023257 , 14026332
5 * 6 [11] : 13346984 , 13395944 , 27884372
5 * 6 [12] : 19312228 , 19372871 , 47808126
5 * 6 [13] : 24301031 , 24358063 , 71100756
5 * 6 [14] : 26642430 , 26684251 , 92095994
5 * 6 [15] : 25463979 , 25488051 , 104165490
975132人目の素数さん
2024/05/08(水) 21:14:16.32ID:o+7mX6D2
■R

# 宝の数を変化させる
treasure0 <- function(m=3,n=4,k=2){
y=1:(m*n)
(z=matrix(y,ncol=n,byrow=T))
(P=as.vector(z))
(Q=as.vector(t(z)))
PQ <- function(x){
p=q=numeric(k)
for(i in 1:k){
p[i]=which(P==x[i])
q[i]=which(Q==x[i])
}
min(p)-min(q)
}
tre=combn(m*n,k)
re=apply(tre,2,PQ)
return(c(短軸有利=sum(re<0),長軸有利=sum(re>0),同等=sum(re==0)))
}
sapply(1:12,function(k) treasure0(3,4,k))

> sapply(1:12,function(k) treasure0(3,4,k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]
短軸有利 5 26 73 133 167 148 91 37 9 1 0 0
長軸有利 5 27 76 140 176 153 92 37 9 1 0 0
同等 2 13 71 222 449 623 609 421 202 64 12 1
976132人目の素数さん
2024/05/08(水) 21:20:47.36ID:80mTSPJI
>>975
min(p)-min(q)

max(p)-max(q)ではないでしょうか?
977132人目の素数さん
2024/05/08(水) 21:26:58.86ID:o+7mX6D2
■haskellに移植

import Data.List
import Data.List.Split
m = 5 -- 縦マス(短軸)
n = 6 -- 横マス(長軸)
k = 5 -- 宝の数
q = [0..m*n-1]
matQ = chunksOf n q
matP = transpose matQ --行列を転置して
p = concat matP -- 配列に変換

combinations :: Int -> [a] -> [[a]]
combinations 0 _ = [ [] ]
combinations n xs = [ y:ys | y:xs' <- tails xs, ys <- combinations (n-1) xs']
treasure = combinations k q -- 宝の組み合わせ
ip y = minimum $ map(\x -> elemIndices x p!!0) y -- 宝の、配列pでのindex列を求めて最小値を返す
iq y = minimum $ map(\x -> elemIndices x q!!0) y

idxp = map ip treasure -- 宝の組み合せで実行して
idxq = map iq treasure

p_q = zipWith (-) idxp idxq -- 差をとって大小判別
p1st = length $ filter (<0) p_q -- 短軸方向探索pが先に宝をみつける
q1st = length $ filter (>0) p_q
draw = length $ filter (==0) p_q

main = do
putStrLn $ "p1st = " ++ show p1st ++ ", q1st = " ++ show q1st ++ ", draw = " ++ show draw

>matrix.exe
p1st = 55469, q1st = 54036, draw = 33001
978132人目の素数さん
2024/05/08(水) 21:32:32.19ID:80mTSPJI
宝の数と配置をランダムに決めるとして
15×2のマスでもこの程度の差(単軸有利)に終わった。
> summary(re)
Min. 1st Qu. Median Mean 3rd Qu. Max.
-14.000 0.000 0.000 -0.212 0.000 13.000

Rのスクリプトが投稿されている。
他の人のプログラムを読むのは勉強になっていいなぁ。
979132人目の素数さん
2024/05/08(水) 23:13:57.87ID:80mTSPJI
短軸 sマス
長軸 l マス
宝 t 個
のときの総当たり計算

f=\(
s=5, # skort axis
l=6, # long axis
t=7){# tresure
sl=s*l
long=1:sl
mat=matrix(long,ncol=l,nrow=s,byrow=TRUE)
short=as.vector(mat)
os=order(short)
dif=combn(sl,t,\(x) max(os[x])-max(x))
list(
探索数差=mean(dif),
短軸有利=mean(dif<0),
同等=mean(dif==0),
長軸有利=mean(dif>0))
}
f()
980132人目の素数さん
2024/05/08(水) 23:16:00.17ID:80mTSPJI
最初の宝をみつけるかmin、お宝全部みつけるかmaxのどちらで計算するかだな。
981132人目の素数さん
2024/05/08(水) 23:51:55.52ID:o+7mX6D2
P君が縦にnマス,
Q君が横にn+1マス移動時、
残ったマス数とk-1のコンビネーション
繰り返すだけ
982132人目の素数さん
2024/05/09(木) 00:06:38.71ID:vS28WcMc
>>944
迂回(まわり道)解法

 P: (x, y) = (r・cosθ, r・sinθ)
とおけば
 y/x = tanθ,
軸を45°回して y=x をu軸、y=-x をv軸とすると
 (sinθ-cosθ)/(sinθ+cosθ) = v/u = tan(θ-45°),
u軸上に
 Q: (x, y) = (3, 3)  (u, v) = (3√2, 0)
をとる。
 ∠POQ = θ-45° となる点Pをとろう。
 tan(∠POQ) = tan(θ-45°) = v/u = 1/3,  (←題意)
 P: (u, v) = (3√2, √2)   (x, y) = (2, 4)
∴ tanθ = y/x = 2,
983132人目の素数さん
2024/05/09(木) 05:49:40.01ID:RdQdgp2K
ID:o+7mX6D2=ID:80mTSPJI
984132人目の素数さん
2024/05/09(木) 07:41:10.03ID:SqUSooPh
>>981
それを多言語で自分の手足のように使って実装できるのがすばらしい。
985132人目の素数さん
2024/05/09(木) 07:49:21.97ID:SqUSooPh
最初の宝をみつけるまでの探索数が少ない方が有利と判定することにして
>979をWolframに移植
長短の差を大きめにして実行してみる。


(* s:短軸枡数 l:長軸枡数 t:宝の数 *)
s=2; l=15; t=3;

long=Range[s*l];
(mat=Partition[long,l])//MatrixForm;
short=Flatten[Transpose[mat]];
tre=Subsets[long,{t}];
long;
short;
os=Ordering[short];
subsets=Subsets[long,{t}]; (* combn(long,t) *)
nshort=Min[os[[#]]]& /@ subsets;
nlong=Min[#]& /@ subsets;
{"short search"->Mean[nshort],"long search"->Mean[nlong]}
% //N
dif=nshort-nlong; (* 探索枡差*)
Histogram[dif,AxesLabel->{探索枡差(短軸-長軸),""}]
sif=Sign[dif];
mshort=Mean@Boole[#==-1& /@ sif]; (* 短軸有利割合*)
meven=Mean@Boole[#== 0& /@ sif]; (* 互角割合*)
mlong=Mean@Boole[#== 1& /@ sif]; (* 長軸有利割合*)
{"short beats"-> mshort,"even" ->meven,"long beats" ->mlong}
% // N

実行結果
高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
986132人目の素数さん
2024/05/09(木) 08:13:38.84ID:l48JEfyA
> sapply(1:20,function(k) treasure0(4,5,k))
[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11]
短軸有利 9 84 463 1776 5076 11249 19797 28057 32243 30095 22749
長軸有利 9 83 453 1753 5075 11353 20057 28400 32528 30250 22803
同等 2 23 224 1316 5353 16158 37666 69513 103189 124411 122408
[,12] [,13] [,14] [,15] [,16] [,17] [,18] [,19] [,20]
短軸有利 13820 6656 2486 695 137 17 1 0 0
長軸有利 13831 6657 2486 695 137 17 1 0 0
同等 98319 64207 33788 14114 4571 1106 188 20 1

4×5の場合
宝:1個 同等
宝:2~5個 短軸有利
宝:6~13個 長軸有利
宝:14~20個 同等

□■■■■
□□■■■
□□□■■
□□□□■

短軸有利☆

Table[sum[C(2n-1+C(0,(21mod n)-1),k-1),{n,1,9}],{k,1,20}]

長軸有利☆

Table[sum[C(2n-1+C(0,6mod n)-C(0,C(3,n-2)-1),k-1),{n,1,9}],{k,1,20}]

同等☆

Table[C(19,k-1)+C(17,k-2)+C(15,k-2)+C(13,k-2)+C(8,k-2)+C(1,k),{k,1,20}]
987132人目の素数さん
2024/05/09(木) 08:41:06.04ID:RdQdgp2K
尿瓶朝っぱらからもうID変えたのかよめんどくせぇ
988132人目の素数さん
2024/05/09(木) 09:15:41.06ID:yYb3W7tm
p,qを相異なる素数、nを自然数とする。
(p+qi)^nは実数でないことを示せ。
989132人目の素数さん
2024/05/09(木) 12:33:07.87ID:SqUSooPh
>>986
Wolfram言語の練習にその結果を検算

高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚
最終行
0:互角
-1:短軸有利
1:長軸有利

結果は合致したので
Wolframで正しくコードできたと実感できた。
990132人目の素数さん
2024/05/09(木) 19:45:32.67ID:sBNvJAPA
>>989
いつになったら日本語理解できんだよ?
991132人目の素数さん
2024/05/09(木) 22:30:04.32ID:VA/8d2rk
>>964
コードのサラダって何だよアホか
言葉のサラダ(統合失調症に特徴的な症状)だろアンタは
992132人目の素数さん
2024/05/10(金) 05:02:28.89ID:esg1TcXl
凸四角形ABCDの頂点の座標から
A,Bを通り、CーDを結ぶ直線と接する円を描画するプログラムを作成せよ。
993132人目の素数さん
2024/05/10(金) 05:03:33.15ID:esg1TcXl
R言語やWolfram言語が使える人はちゃんとしたレスをしているなぁ。
助言より罵倒を喜びとするPhioseくんらの集団が東大合格者だと思う人はその旨をレスしてください。
994132人目の素数さん
2024/05/10(金) 06:11:20.21ID:tIlXy57I
>>993
どうせアンタの自演だろ
他はもうスレチに飽き飽きしてるから
995132人目の素数さん
2024/05/10(金) 06:28:02.54ID:tIlXy57I
>>993
大体アンタのどこが助言なん?w
誰にも求められてないしただスレチなことをブツブツほざいてるだけの日本語通じない統失チンパン
ご丁寧にスレ誘導までしてくれてるのにその助言を一切無視してここのスレに粘着して発狂してるのがアンタ
この日本語も理解できないのか?アンタの知能レベルだと
996132人目の素数さん
2024/05/10(金) 07:51:10.17ID:LuJ/YByN
プログラムを本気で学ぶつもりならム板が正解だろ
全方向に中途半端なんだよな
高校生にしかイキれない大人
クソダサい
997132人目の素数さん
2024/05/10(金) 08:45:11.95ID:M//P1S5U
>>993
悪口すら綴りまともに書けないのかよ
ゴミすぎだろ
998132人目の素数さん
2024/05/10(金) 10:00:28.77ID:CQVVHvgk
>>993
Phioseって何だよ尿瓶ジジイw
日本語も不自由なら他の言語もお察しってことねww
あー恥ずかしw
999132人目の素数さん
2024/05/10(金) 14:59:38.72ID:LuJ/YByN
質問いいですか
1000132人目の素数さん
2024/05/10(金) 15:17:52.27ID:mOhhnf0r
1000なら今後尿瓶ジジイ>>993は書き込み禁止
-curl
lud20241229201620ca
このスレへの固定リンク: http://5chb.net/r/math/1712376048/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。

TOPへ TOPへ  

このエントリをはてなブックマークに追加現在登録者数177 ブックマークへ


全掲示板一覧 この掲示板へ 人気スレ | >50 >100 >200 >300 >500 >1000枚 新着画像

 ↓「高校数学の質問スレ Part434 YouTube動画>1本 ->画像>52枚 」を見た人も見ています:
高校数学の質問スレ Part428
高校数学の質問スレ Part433
高校数学の質問スレ Part422
高校数学の質問スレ Part441
高校数学の質問スレ Part422
高校数学の質問スレ Part432
高校数学の質問スレ Part425
高校数学の質問スレ Part424
高校数学の質問スレ Part438
高校数学の質問スレ Part427
高校数学の質問スレ Part414
高校数学の質問スレ Part420
高校数学の質問スレ Part418
高校数学の質問スレ Part435
高校数学の質問スレ Part412
高校数学の質問スレ Part438
高校数学の質問スレ Part416
高校数学の質問スレ Part426
高校数学の質問スレ Part410
高校数学の質問スレ Part431
高校数学の質問スレPart407
高校数学の質問スレPart403
高校数学の質問スレPart397
高校数学の質問スレPart404
高校数学の質問スレPart408
高校数学の質問スレPart402
高校数学の質問スレPart400
高校数学の質問スレPart405
高校数学の質問スレPart403
高校数学の質問スレPart406
高校数学の質問スレPart401
高校数学の質問スレPart406
高校数学の質問スレPart407
高校数学の質問スレPart402
高校数学の質問スレPart397
高校数学の質問スレPart405
高校数学の質問スレPart399
【あさひ】高校数学の質問スレPart397
高校数学の質問スレ(医者・東大卒禁止) Part438
高校数学の質問スレ(医者・東大卒専用) Part438 (930)
数学の質問スレ
高校数学の問題を出し合い解き合うスレ
面白い高校数学の問題貼ってくスレ
春から私文のワイに超絶優しくわかりやすい高校数学の参考書を教えるスレ
大学数学の質問スレ Part1 (34)
【留学】初心者の質問スレpart3【高校・大学留学】
高校数学って要は
高校数学教師てさ
「問題を作る!高校数学」
高校数学のボス達
高校数学の方が楽しかった
高校数学のベクトルは何なの?
高校数学で最も難しい分野は何?
いい感じの高校受験の数学の問題をくれ
高校数学から大学数学へのつなぎ
高校数学 この問題解けたらアイス奢る
高校数学の解放網羅系の参考書について
ベクトルの外積って高校数学の教科書に
中学数学を100とした場合の高校数学の難易度
高校数学の「二次曲線」って重要なの?
高校数学って試験勉強必要か…?
08:05:50 up 68 days, 9:04, 0 users, load average: 11.90, 11.72, 12.51

in 0.030452966690063 sec @0.030452966690063@0b7 on 062421