◎正当な理由による書き込みの削除について: 生島英之 とみられる方へ:すべての言語を判定する計算機構 [無断転載禁止]©2ch.net ->画像>1枚
動画、画像抽出 ||
この掲示板へ
類似スレ
掲示板一覧 人気スレ 動画人気順
このスレへの固定リンク: http://5chb.net/r/tech/1463577204/ ヒント: 5chスレのurlに http ://xxxx.5chb .net/xxxx のようにb を入れるだけでここでスレ保存、閲覧できます。
チューリングマシンは可算個しかないからすべての言語は判定できないという。 じゃあチューリングマシンを拡張して濃度を増やせばいいんじゃね? そのような拡張を考えたときどのようなものが出来上がるか?あるいは無意味なのか? そんなことを考えるスレ。
言語Lをdecider M(1..i)の集合とする この時Mは有限個なのでLはdecidableであり、対応するEnumerator Eが存在する この時次のように動くチューリングマシンM'を考える 入力xに対して、すべてのアルファベットの組み合わせにおけるj番目=xを計算する 前述のEを用いてMjを取り出し、Mjに入力xをシミュレートさせる もしMjがxを受理したらM'は拒否する、あるいはその逆を行う すべてのMはdeciderなのでM'もdeciderであり その言語L(M')もdecidableであるがL(M')はL内にあるどのL(M1...i)とも一致しない つまり言語を判定できるチューリングマシンがいくつあろうとも その集合によって判定できない言語L(M')を常に作り上げることができる つまりすべての言語を判定できるチューリングマシンは存在しない 証明終わり
>この時Mは有限個なので なんで有限個なの?今考えている拡張は有限とかいう縛りは考えてないぞ。
別に有限じゃなくても大丈夫だよ。有限だと言語Lがdecidableなのは自明というだけのこと とにかく判定対象の言語Lはdecidableだというのが肝 すると結局LのEnumerator EとLを判定するマシンMで同じことができる
>すべてのアルファベットの組み合わせにおけるj番目=xを計算する ここもダウト。 今考えてる拡張はアルファベットを基にしたものとは限らない。 例えば実数を扱えるようにするとか。
マシンは拡張するけど言語は拡張しないからね?言っとくけど。
実数だって一緒だよ。{0-9.+-}というアルファベットの組み合わせなんだから 実数自体はuncountableなのが問題だけど 実数を扱えるチューリングマシンを”仮定”するならEnumeratorは作れる ところでEnumeratorって日本語だとなんていうの?列挙?
可算の動きしか通常仮定しないチューリングマシンにおいて実数を取り扱うって自体 話を無理矢理な方向にもって行き過ぎ。 uncountable なのは本質なのに。
だからチューリングマシンを拡張して濃度を増やすっつってんだろ。 濃度が増えなきゃ意味ない。 もう寝る。
今のところ通常のチューリングマシンにオラクル・ストリングという名前の実数を一つ書き込めるテープを追加したものを考えている。 このオラクル・ストリングに例えばチャイティンのΩのような実数を書き込めばチューリングマシンの停止問題を判定する 拡張チューリングマシンが構成できるだろう。 オラクル・ストリングに任意の実数を書き込めるなら任意の言語を判定する拡張チューリングマシンが構成できると思う。 まあ、これはほとんどトートロジーだよね。
オラクル・ストリングに書き込む実数のパワーによって拡張チューリングマシンのパワーも変わってくると思う。 じゃあ、最強のオラクル・ストリングは存在するのか?しないのか?とかそんなことを考えている。
うん?
最強のオラクル・ストリングはまさに
>>3 の議論によって存在しないのか?
よくわからなくなってきたw
拡張チューリングマシンが判定する言語に対して文字列を辞書順に並べ 言語に含まれるなら1含まれないなら0という風に数値を並べ実数を構成する。 ある実数aをオラクル・ストリングにもつ拡張チューリングマシンから生成できる実数の集合をL(a)とする。 Not(a∈L(b)) And Not(b∈(L(a))を満たすような実数の組(a,b)は存在するか?
辞書順だとちょっとまずいかな。 まず文字列の長さでならべてそれぞれの長さに対して辞書順でならべたほうがいいかな。
すべてのa∈Rに対してNot(b∈L(a))となるb∈Rが存在する。 濃度より明らか ゆえに最強のオラクル・ストリングは存在しない。
>>14 も濃度から存在が言えるかな?
よくわからん。
ん?
>>16 って正しい?
自信なくなってきたwww
既存のチューリングマシンが全ての言語を認識できないなんて誰でも知ってるんだから 拡張して濃度を上げるってんならその拡張をどうやるかについて最初に話すべきじゃない?
>>21 俺よりいいアイディア持ってるやつがひょっとしたらいるかと思ってな。
遅まきながら俺のアイディアは
>>11 で示した。
任意の実数aに対してa∈L(a) まあ当たり前かな。
L(a)=L(b)というaとbの同値関係によって実数を同値類に分類したらなにか出てくるかな?
キーワードはこの辺やな 相対計算可能性 チューリング次数 チューリング還元可能
ネットだといまいち、いい情報が見つからないな。 本でも買うか…
>>1 形式的に書くと、こんな感じかな。
拡張したチューリングマシン = {Tape, State, Position, Delta, Lambda, Mu}
Tape: Array of Number
State: Integer
Head-Position: Integer
Delta = State * Tape[Position] -> Number
Lambda = State * Tape[Position] -> State
Mu = State * Position -> {-1, 0, 1}
Transition = {Tape(n), State(n), Position(n)} ->
{
Tape(n)[-Infinity .. Position(n) - 1] .. Delta(State(n), Tape(n)[Position(n)]) .. Tape(n)[Position(n) + 1 .. Infinity],
Lambda(State(n), Tape(n)[Position(n)]),
Position(n) + Mu(State(n), Position(n))
}
但しIntegerは可算無限集合、Numberは非可算無限集合、Arrayは高々可算無限長の配列とする。
(
>>29 の続き)
とすると
初期状態{Tape(0), State(0), Position(0)}が与えられていると仮定する。
補題1
Tape(0)[-Infinity .. Infinity]に含まれる値の個数は高々加算無限個なので、
ある関数fが存在し、Tape(0)に存在する全ての値rは、ある整数iが存在し、f(i) = rを満たす。
補題2
整数は自然数に一対一対応可能なため、ある関数gが存在し、Tape(0)に存在する全ての値rは、
ある自然数nが存在し、g(n) = rを満たす。
定理3
g(-n-1) = Delta(State(n), Tape(n)[Position(n)])を満たすように関数gを選ぶ。この時
任意の非負整数nに対し、Tape(0..n)に含まれる値の個数は可算無限個である。
証明3
帰納法による。
n = 0の時、Tape(0..n)に含まれる値の個数は可算無限個である。
n = kの時にTape(0..k)に含まれる値の個数が可算無限個であると仮定する。
n = k + 1の時、Tape(k)に含まれず、かつTape(k + 1)に含まれるような値が存在するとすれば、
その値はDelta(State(k), Tape(k)[Potision(k)])と等しい。
その値をg(-k-1)と置くと、Tape(0..k+1)に含まれる値は全て
ある関数gを用いて整数と一対一対応可能である為
Tape(0..n)に含まれる値の個数は加算無限個である。
(
>>30 の続き)
よって、以下の定理が成り立つ
定理4
この方法により拡張されたチューリングマシンの計算能力は、
元のチューリングマシンと等価である。
証明4
高々加算無限回の演算によってテープに出力可能な値の集合の濃度がN0に等しい事から、
それらの値を適切に符号化する事によって
元のチューリングマシンで高々可算無限回の演算をエミュレート出来る為自明。
よくわからんが拡張の仕方がまずいと元のチューリングマシンと能力変わんないのはあり得る話だと思う。
>>21 って
>>11 のと違うやつだよね?
>>21 だと濃度も増えてないっしょ?多分。
よければ
>>11 のも形式的に書いてくれんか?
いや、
>>11 を適当にエスパーしたのが
>>29 なんだけど、
その結果得られた拡張だと上手く行かないよって事を言った。
>>11 をもうちょっと分かりやすく書きなおしてくれない?
もしかしたら俺が勘違いして
>>1 が意図したのとは違う拡張をしてるかも知れんから。
上手く定義できてるか不安だが以下のような感じかな。 拡張チューリングマシンは以下の要素からなる 1.状態の集合Q 2.オラクルテープの内容O 3.入力アルファベットΣ 4.テープ・アルファベットГ 5.遷移関数δ:Q x Г x {0,1} -> Q x Г x {L,R} x {L,R} 6.q_0∈Qは開始状態 7.q_accept∈Qは受理状態 8.q_reject∈Qは拒否状態 拡張チューリングマシンは以下のように動作する。 通常のテープとオラクルテープがあり、 それぞれのテープの上に通常ヘッド、オラクルヘッドが載っている。 オラクルテープには可算無限長の0,1のデータが書き込まれている。 初期状態では通常のテープには入力が書き込まれていて、 通常ヘッド、オラクルヘッドはともにそれぞれのテープの左端にあり、 状態はq_0である。 拡張チューリングマシンは1ステップで通常ヘッドの記号とオラクルヘッドの記号を読み込み、 それと状態にしたがって通常テープの書き換え、通常ヘッドの移動、オラクルヘッドの移動、状態の遷移を行う。 状態がq_acceptになればその入力を受理する。 状態がq_rejectになればその入力を拒否する。 オラクルテープの存在によって拡張チューリングマシンの濃度は可算を超える。
うーん Γが有限集合であると仮定すると、 それは単にテープが2つあるチューリングマシンって事になると思うんだけど テープが2つあるチューリングマシンはテープ1つのチューリングマシンと等価。
次のようにすればテープ1つのチューリングマシンでテープ2つのチューリングマシンをエミュレート出来る: テープ上の記号の集合をΓ∪{0, 1}とする。 初期状態として、4*i番地と4*i+1番地は非負整数iに対し0で初期化し、負の整数iに対し1で初期化する。 また、4*i+2番地は入力テープ上の添字iのデータで、4*i+3番地はオラクルテープ上の添字iのデータで初期化する。 また、初期状態でテープヘッドは添字0にあるものとする。 状態集合は、エミュレート先の状態集合Qに対しQ x Γ x {0, 1} x Γ x {L, R} x {L, R}の高々定数倍となる。 以下ループ ・手続きS1を呼び出す ・更に2回右へ移動し、テープの値を読み込み、保持する。この値を値(1)とする。 ・1回左に移動する ・手続きS1を呼び出す ・更に2回右へ移動し、テープの値を読み込み、保持する。この値を値(2)とする。 ・値(1)と値(2)、現状態から次状態と出力するべき値(3)、二つの移動(1)(2)を計算し、それを保持する ・3回左へ移動する ・手続きS1を呼び出す ・更に2回右へ移動し、テープへ値(3)を出力し、2回左へ移動する ・移動(1)がLの場合、4回左へ移動し、テープへ0を出力する。 ・移動(1)がRの場合、テープへ1を出力する。 ・1回右へ移動する ・手続きS1を呼び出す ・移動(2)がLの場合、4回左へ移動し、テープへ0を出力する。 ・移動(2)がRの場合、テープへ1を出力する。 ・1回左へ移動する 手続きS1の定義: ・現在の値が0と等しい場合、4回左へ移動し、もう一度この行を実行する ・現在の値が1と等しい場合、4回右へ移動し、もう一度この行を実行する 定義修了
sage忘れスマソ s/修了/終了/ あと、S1での「現在の値」は現在のテープヘッドから読み込んだ時の値って読み替えて。
テープ二本のチューリングマシンと違うのはオラクルテープに可算無限の情報をあらかじめ書き込めるってことかな。
テープ2本のチューリングマシンも予め可算無限個の情報を書き込めるけど・・・・・・?
初期状態として、テープに可算無限個の列を与えることはよくある拡張だし
>>37 はその拡張を踏まえてるって事。
例えば、チューリングマシンで足し算をするアルゴリズムは
初期状態として1進数で2つの数がテープに書かれていると仮定する場合が殆ど。
それは計算が有限ステップで終了することを前提にした場合の話だよね? そもそもは無限長のテープを仮定するんだから、 可算無限個のデータ列がそのテープ上に記述されているとするのは自然な発想だと思うんだけど。
いや、
>>35 の拡張チューリングマシンは入力は有限長でさらに有限ステップで停止することを考えている。
オラクルテープの内容は入力ではなくてチューリングマシンの一部。
状態とかと似たようなもんかな?
ちょっと待った。 「入力」は何を指してる? 俺は全てのテープ上に存在するデータの集合を指して「入力」って言ってるけど、 君はそうでないように思える。 オラクルテープの内容が計算開始時点で所与であると仮定するならば、 テープとヘッダをもう一組追加するのと何ら変わりはない。 複数のテープがある時に、遷移前にテープへデータを書き込まないようなヘッダの存在を許す拡張は至って普通。 ついでに言うと、通常テープに対する任意の入力列xに対してそのプログラムが有限時間で停止すると仮定するならば、 その停止時刻をT(x)とした時に、オラクルテープの添字T(x)の右側は無視できる。 何故ならそこまでヘッダを動かすのに最低でもT(x)時間掛かるから。 とするならば、オラクルテープが可算無限長であろうが有限長であろうが同じ議論が成り立つと思うのだけど。
入力は計算開始時に通常テープに書かれてるものだけを指している。 >その停止時刻をT(x)とした時に、オラクルテープの添字T(x)の右側は無視できる。 これはそうはならない。 なぜなら停止時刻は入力によって左右されるものだから。 入力が大きくなれば停止時刻も大きくなり、 結果、オラクルテープが可算無限長もつのは本質的である。
>>47 ふぅむ
> なぜなら停止時刻は入力によって左右されるものだから。
その入力によって左右される値を関数形でT(x)と書いたのだけど・・・・・・
今、有限長入力列xが与えられたとしよう。
但し、有限時間T(x)でプログラムは終了するものとする。
さて、任意の正の整数aに対し、添字T(x)+aにヘッダを移動するのには最低でも時間T(x)+aだけ掛かるから
時刻T(x)の時点で添字T(x)+a上の値を読み取ることは不可能である。
よって、任意の有限長入力列xに対し、ある値T(x)が存在し、位置T(x)より右側は無効である。
この議論が問題ないとするならば、系として
どのような有限長入力列を用意したとしても、それがプログラムを必ず有限時間内に停止させるのであれば、
オラクルテープ上の有限個の要素しか扱う事は出来ない。
つまり、オラクルテープ上の要素数は本質的に有限個である。
という事が言えると思うのだけど。
入力が有限であっても上限はないでしょ? 上限がない入力に対応するために無限のオラクルテープが必要になるの
それは正確には 長さに上限がない入力に対応するために、非常に長いオラクルテープが必要になりうる じゃない? 一定時間あたり有限個の要素しか扱うことができず、 有限時間で停止するならば 停止するまでに有限個の要素しか扱うことが出来ない というだけの、掛け算レベルの話なんだけど。
一つの入力に対しオラクルテープの有限部分しか使わないことと、 すべての入力に対して無限のオラクルテープが必要になることは矛盾しない。
いや、それは矛盾する。 何故なら、計算開始時点でオラクルヘッドは常に左端にあって 任意の正の整数iに対し、オラクルヘッドを添字iに移動するのに最低でもiステップ掛かり そしてどんな入力を与えても有限時間で動作を停止するから。
だから入力一つにたいして有限ステップなのは認めるよ。 お前の言ってるのは通常のチューリングマシンのテープ長も有限でいいって言ってるようなもんだぞ。
>>55 もしも、任意の入力に対して常に停止するプログラムだって事が保証されてるなら
通常のチューリングマシンのテープ長も有限で良い。
もしプログラムが停止しないような入力が存在するなら、
その時に限り、無限長のテープが必要になる。
ところでー
>>37 は
オラクルテープの長さが無限であろうが、
入力長が無限であろうが、
有限時間で止まらなかろうが、正しく動くんだけど
じゃあ入力に対してそれを2倍にするプログラムを考えよう。 これは常に停止するな? テープ長が有限でいいならこのプログラムに対してどれだけのテープがあればいいのだ?
うーん 俺は 全ての入力列xに対し、ある有限の整数Nが存在し、プログラムは高々N個の要素を使用する って言ってるのに対し、君は多分 ある有限の整数Nが存在し、全ての入力列xに対し、プログラムは高々N個の要素を使用する と受け取ってるんじゃないかな。 後者は明らかに偽だ。
というか後者が成り立つようならそれは有限個どころか定数個の要素しか使ってない。 定数個しか使わないということは、 チューリングマシンどころか有限状態オートマトンでも計算できるという事になる。
普通、あるマシン(有限オートマトン、プッシュダウンオートマトン、チューリングマシン問わず)が どの言語を判定するかという話をするとき、マシンの構成というのは入力によって構成を変えたりしないのだ。 お前がチューリングマシンのテープが有限でいいとか抜かすのは 入力によってマシンの構成(使えるテープの長さ)を無意識のうちにこっそり変えているのだ。 マシンの構成を入力によって変えてはいけないということが了承できるなら、 チューリングマシンのテープ長が可算無限必要なことも了承できるはずだ。
と思ったけど多項式時間チューリングマシンとかあるんだっけw よくわからなくなってきたww どっちにしろテープが有限てことはあり得ないが。
チューリングマシンの下位に当たる線形拘束オートマトンが
まさに入力長に対してテープ長を変化させるシステムなんだが。
あと、
>>57 に書いてあるけど、
>>37 はそのオラクルテープとやらが無限長だろうがなんだろうが問題なく動くぞ?
だから通常のチューリングマシンの状態は有限じゃなきゃいけないの。
オラクルテープは可算無限長だから通常のチューリングマシンでは
>>37 の
「4*i+3番地はオラクルテープ上の添字iのデータで初期化する。」
てのは無理なの。
>>37 の議論はオラクルテープの存在を認めており、
オラクルテープと通常のテープを一本にまとめてヘッドを一つに出来るという議論であって
通常のチューリングマシンでオラクルテープをエミュレートできるという議論ではない。
本質はオラクルテープがあるかないかだから。
そこんとこ間違えないで。
「状態」が有限だっていうのは、状態集合Qが有限集合だって意味であって テープ上に「情報」を乗っけることとは全く関係ないんよ?
>>37 じゃあ、オラクルテープのない通常のチューリングマシンでどうやって
「4*i+3番地はオラクルテープ上の添字iのデータで初期化する。」
を実現するんだよ。
>>69 オラクルテープの内容は所与なんだろ?
したらば、テープ1を使うチューリングマシン1の他に、
テープ1とオラクルテープを使うチューリングマシン2を使って
並列計算すれば良い。
意味不明 オラクルテープを使うチューリングマシン2を使ってってなんだよ? オラクルテープ使うんじゃん。 そうじゃなくてオラクルテープなしでオラクルテープをエミュレートしろっつってんの。
どういうこと? オラクルテープの内容は所与だよね?
すまん、所与の意味が分からんw オラクルテープの内容の扱いは状態遷移表の内容の扱いに近い。 通常テープの入力の扱いとはまったく違う。
すまん、そろそろ寝るわ。 これでも平日は朝6時に起きなきゃならん。
えーと、前提知識として与えられているものと仮定できるんだよね?っていう事
そのテープの内容は、勿論テープを媒体として与えられているとここでは仮定して、
>>70 は「オラクルテープ」と言う名のテープからテープ1へ転写してる。
そう、オラクルテープは前提の知識として与えられていると仮定できる。 そして、通常のチューリングマシンでは有限の情報しか所与にする手立てがなく、 オラクルテープは可算無限ビットの情報を所与に出来る。 だから拡張チューリングマシンは通常のチューリングマシンと本質的に異なる。
> そして、通常のチューリングマシンでは有限の情報しか所与にする手立てがなく、
違う。
そのオラクルテープの「内容」が所与なんだから
その内容がテープ上に記述された状態で計算を開始するものとすれば
可算無限長の情報を所与とする事は出来る。
1936年の論文の236ページに、可算無限個の情報による初期化の例が載ってる。
https://www.cs.virginia.edu/ ~robins/Turing_Paper_1936.pdf
何でも良いから 拡張チューリングマシンで計算できて普通のチューリングマシンで計算出来ないようなプログラムを オラクルテープの内容の計算方法含めて書いてみてくれない?
例えばチューリングマシンの停止問題。 チューリングマシンを辞書順に並べてx番目のマシンが停止するかどうかをH(x)とおく。 オラクルテープにH(x)を書き込んで置き、入力でxが与えられたら オラクルテープのx番地を読み込んで1なら受理、0なら拒否する。 こうすることでチューリングマシンの停止問題を判定する拡張チューリングマシンが構成できる。 もちろん我々は具体的にこのオラクルテープを構成することは不可能だろう。 しかしチューリングマシンの停止問題を判定する拡張チューリングマシンは確かに存在するのである。
つか本屋行けてないわ。 マイナー分野だしでかい本屋で探しても見つかるかどうか…
>>80 どうやってH(x)を計算するの?
H(x)を計算できる前提で拡張チューリングマシンが存在するのなら
Aならば(=>)BでいうところのAが偽なのでBはなんでも言えるんだがw
例えばH(x)が計算できるならば1+1=3であるも真になるぞ
具体的にH(x)は「計算」では求められない。 しかし拡張チューリングマシンは存在する。 そういうことだ。
一点目:
> チューリングマシンを辞書順に並べてx番目のマシンが停止するかどうかをH(x)とおく。
・プログラムの個数は非可算無限個。辞書順に並べることは出来ないし、「x番目」という言い方も出来ない。
・マシンへの入力を考慮していない。
・問題解決の前提知識として、その問題の答えを要求している; 拡張チューリングマシンが存在する為には、拡張チューリングマシンが必要である。
どう回避する?
二点目:
Nビットで表現できる全てのプログラム・入力対について判定する問題に置き換える。
つまり、プログラムは有限個であり、辞書順に並べることが出来る。
又、そのプログラム・入力対が有限時間で停止するかどうかは、つまりH(x)の値は既知であると仮定する。
この時、プログラムxが停止するかどうかを判定する
>>80 による拡張チューリングマシン上のプログラムの
時間計算量はO(2^N)である。
ところで、例えば世界最小のインタプリタは98バイト、そのインタプリタが停止しない最小の入力は3バイトなのでN=808について考えると、
拡張チューリングマシンが1秒間に10^100ステップ計算出来たとしても、終了までに平均2.7*10^135年掛かる。
もう少し現実的なプログラムは無いの?
>プログラムの個数は非可算無限個。 は? 今問題にしているのは通常のチューリングマシンの停止問題であって 拡張チューリングマシンの停止問題ではないぞ? >問題解決の前提知識として、その問題の答えを要求している もちろんそうだが。 そういう見方をすれば確かにこれはつまらない。 しかし真に興味深いのは2つのオラクルテープの関係を調べることなのである。 一方のオラクルテープは他方のオラクルテープより真に強力、ということがあり得る。 そのような関係が美しい数学的構造を成すのである。 >もう少し現実的なプログラムは無いの? お前のような知識のあるやつがこんなセコイ因縁を吹っかけてくるとは失望したぞ。
>>86 もちろんそうだが、じゃねぇよ。
三角形の内角の和が180度だから平行線は交わらないって言ってるようなもんだぞ。
ついでで悪いんだけど、
プログラムの個数が高々可算無限個だというのなら自然数と対応付ける方法を示してくれない?
俺には非可算無限個にしか思えないんだ。
>プログラムの個数が高々可算無限個だというのなら自然数と対応付ける方法を示してくれない? うん? チューリングマシンが可算個、入力が可算個で可算の直積集合になると思ったがなにか勘違いしてるだろうか? >三角形の内角の和が180度だから平行線は交わらないって言ってるようなもんだぞ。 意味わからんどんな例えだ。
ごめんよ、よーく考えたらプログラムは高々可算無限個だったわ。
(えーと、状態集合Qの大きさをq、入力集合Γの大きさをγとすると、O(q^γ)パターン存在する。
とすると、状態の集合Qの大きさがqであるようなチューリングマシンはO(q^γ x log q)ビットの情報と等価に変換できる。
んでもって、qとγは有限の値を取るからー)
実数の濃度みたいに対角線論法で非可算個になる気がしてた。
喩えについてはユークリッド幾何学の第五公理に関する歴史と論争について知ってれば分かるかと
https://ja.wikipedia.org/wiki/%E5%B9%B3%E8%A1%8C%E7%B7%9A%E5%85%AC%E6%BA%96 本題に戻るけど 計算不能なテープをどうやって用意するの?
>喩えについてはユークリッド幾何学の第五公理に関する歴史と論争について知ってれば分かるかと すまん、知らん。 >計算不能なテープをどうやって用意するの? 実際に用意はできないがあると仮定して推論を進めるのである。
思わず議論が白熱して張り付いてしまったがこれはいかんなw 張り付くの自重せねばw
仮定して推論を進めるのが有効なのは背理法の時だけかと
詳しくはしらんがリーマン予想が真ならば~と仮定して推論を進めた論文が結構あるそうだぞ。
それは、証明はされていないけど正しいと思われているから。 P≠NPを仮定すれば現代の暗号は安全だっていうのも同じだね。 一方で、君は計算することが出来ないという事が証明されている数が所与であるという 無茶苦茶な仮定を置いてる。 特技:イオナズンとか言っちゃう厨二病患者と似たり寄ったり。
読んでないが
>>78 の論文とやらが計算することが出来ない状態を所与にした論文とちゃうの?
持ちネタも尽きたし新しいネタを仕入れないとな。 暫くこのスレはお休みかな。
チューリングマシンの停止問題を解けるオラクルテープを使うとビジービーバー関数が計算出来きるとか 通常のチューリングマシンの停止問題を解けるオラクルテープをもつ拡張チューリングマシンの停止問題を解けるオラクルテープは 通常のチューリングマシンの停止問題を解けるオラクルテープよりさらに強力だとか、そんな感じのネタを仕入れたい。
テープ自体に差はないんじゃないのかな。 結局テープにH(x)とかを書き込むんでしょ? それともオラクルテープの内容が違うだけで別クラスの拡張チューリングマシンになるのだろうか
もっと下位のオートマトンをより上位に拡張する方法を一般化したほうが早いんじゃないかな FSMでは何が計算できて、何が計算出来ないのか。それは何故か。 PDAやLBAだとどうだろうか。
チューリングマシンの停止問題を解けるオラクルテープを持つ拡張チューリングマシン の停止問題を解けるオラクルテープを持つ拡張チューリングマシン の停止問題を解けるオラクルテープを持つ拡張チューリングマシン の停止問題を解けるオラクルテープを持つ拡張チューリングマシン… と可算無限回繰り返した時のオラクルテープの内容は如何なるものか。
チューリングマシンの停止問題を解けるオラクルテープを持つ拡張チューリングマシン の停止問題を解けるオラクルテープを持つ拡張チューリングマシンは チューリングマシンの停止問題を解けるや否や?
HALT(TM, x)が解ければAccept(TM, x)もとけるので 入力x∈Σ^*を受け取って∃y∈Σ^*.Accept(y,x)を返す拡張チューリングマシンMを考えた時 その言語L(M)は「あるチューリングマシンM'(=y)によって判定されうる言語」の集合なはず
よく考えたらAccept(y, x)とかいちいち構築しなくても オラクルテープあるんだから「i番目の入力xはあるTMによって判定されるか」を0、1で書き込んでおけば一発だね オラクルテープ万能すぎじゃないかい?
>>106 もともとそういう定義のものだからな。
オラクルテープを自由に書き換えるんじゃなくて、
オラクルテープを固定して遷移関数だけ変えることを考えると、
色々面白い議論も出てくる、はず。
エミール・ポストのwikiに 停止性問題よりもチューリング次数が低い計算不可能な帰納的可算集合が存在するかという問題を提起した。 これは1950年代に肯定的に解決 てのがあるんだけどだれか詳しいこと知らない?
チューリング次数について書かれた良和書が欲しい。 英語分からん。
>>112 日本語でもわからんかったw
とりあえず優先度法というのが気になる。
NP問題周辺の話題に多項式階層というのがあるが チューリング次数と何か繋がっているのだろうか
>>117 お前の深い知識を披露してくれてもいいんだぜ?
僕の知り合いの知り合いができたパソコン一台でお金持ちになれるやり方 役に立つかもしれません グーグルで検索するといいかも『ネットで稼ぐ方法 モニアレフヌノ』 5E8RY
read.cgi ver 07.7.23 2024/12/25 Walang Kapalit ★ | Donguri System Team 5ちゃんねる
lud20250310070727このスレへの固定リンク: http://5chb.net/r/tech/1463577204/ ヒント: 5chスレのurlに http ://xxxx.5chb .net/xxxx のようにb を入れるだけでここでスレ保存、閲覧できます。 TOPへ TOPへ
全掲示板一覧 この掲示板へ 人気スレ |
Youtube 動画
>50
>100
>200
>300
>500
>1000枚
新着画像 ↓「すべての言語を判定する計算機構 [無断転載禁止]©2ch.net ->画像>1枚 」 を見た人も見ています:・逃げ切り計算機で貯金●●万円からの半隠居生活 ・【朗報】ツイッタラー「自動精算機から中国の硬貨が出てきたんだがwwwガチワロタ」2.5万いいね←速攻で嘘松発覚w ・【SICP】計算機プログラムの構造と解釈 Part3 (693) ・【芸能】坂上忍の言動が「すべての女性に失礼」の声も FNS春の祭典、『整形美女企画』が炎上中 ・外れた奴の言い訳! ・どの言語が一番優れているか ・ハゲた時の最強の言い訳 ・猫は人間の言葉を話す 12 ・アタシの言葉を満州弁やゆって ・受験関係の言葉でしりとりするスレ ・岩館真理子の言うことには 8言目 ・「ろ」から始まる全ての言葉をあげていけ ・雑談 粉にも父の日 父への懺悔の言葉 ・まだ云わないでwww呪文めいたその言葉www ・◆◆◆いだてん大失敗の言い訳を考えるスレ ・結局お前の言うセカイって東京のことでしょ ・女に言われると興奮するちんこの言い方1位は勿論… ・漢字のせいで日本固有の言葉が大量に失われた ・【PSO2】をやっていて心に残った誰かの言葉 ・_アホノミクス工作員のリフレ崩壊の言い訳_ ・【V逸間近】巨人ファンの言い訳を予想するスレ ・【日本代表に】WSDヘスス・スアレス66【祝福の言葉を】 ・規制入ったのでズル休みした時の言い訳どう? ・マザー・テレサの言葉をよく覚えておきなさい ・菅義偉官房長官「トランプの言ってることは間違い」 ・女の言う細マッチョってマッチョすぎない? ・うっかりはNG!女性に言ってはいけない4つの言葉 ・黒人「日本人は白人の言うことは全て信じ込む」 ・黒人「日本人は白人の言うことは全て信じ込む」 ・黒人「日本人は白人の言うことは全て信じ込む」 ・黒人「日本人は白人の言うことは全て信じ込む」 ・黒人「アジア人は白人の言うことは全て信じ込む」 ・黒人「アジア人は白人の言うことは全て信じ込む」 ・河野外相「こういうときこそ交流を(それが韓国の言うツートラックでしょwwww」 韓国・釜山市の行政交流中断で ・江戸時代の言葉 ・新型コロナの言語学 ・コスパ←この言葉 ・A級戦犯の言い方を変えよう ・貴方のオススメの言語 ・神さまの言うとおりpart27 ・植松の言葉が正論過ぎる件 ・日本語は海豚の言葉に由来する ・この言葉を造ったのは誰だ!!! ・関東弁は土人の言語 [無断転載禁止] ・最高の言語はシェルスクリプト ・関東弁はバカの言語 [無断転載禁止] ・関東弁はバカの言語 [無断転載禁止] ・関東弁はバカの言語 [無断転載禁止] ・世界の言語で現在進行中の変化 2 ・「続編」の言い方99%一致する説 ・安倍総理に労いの言葉を掛けるスレ ・賢者モードよりもぴったりの言葉見つけた ・井上よ、ビザの問題から、今度は腰痛の言い訳か? ・微妙に違うオススメ、ネ実の言葉 ・「妥協して結婚」は女ならではの言い訳 ・今こそ、オタの気合の言葉を発する時! ・1番キモい痴漢の言い訳言った奴優勝 ・ブラインドで聴き分け出来ない時の言い訳 ・【急募】最近の牧野真莉愛さんの言動を教えてくれ ・ロボットみたいな語感の言葉を書き込むスレ ・女性の言う「中身のある男」が分からない ・落ち込んでるHKTオタに慰めの言葉を送ってあげよう ・2:00までに100いったら105の言う事なんでも聞く ・一般のの方々の言い方を鉄ヲタは勉強しろよ!! ・女装趣味がバレたときの言い訳を考えてくれ! ・女さん結局岡村さんの言うとおりになってしまう。
03:32:33 up 63 days, 4:31, 0 users, load average: 9.04, 9.06, 9.21
in 0.073543071746826 sec
@0.073543071746826@0b7 on 061916