◎正当な理由による書き込みの削除について: 生島英之とみられる方へ:
人工知能ディープラーニング機械学習の数学 ★3 YouTube動画>2本 ->画像>3枚
動画、画像抽出 ||
この掲示板へ
類似スレ
掲示板一覧 人気スレ 動画人気順
このスレへの固定リンク: http://5chb.net/r/tech/1598763788/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。
↑
今朝の虎ニュースで指摘された問題点
垂直に上がるとしてなぜ売電だけで切り札のは(わずかでも)上がってないのか
票数の上がった割合とその瞬間での投票率の比率が可笑しい(全人口が急に10倍になったか)
とか色々言われてた
>>11 全体でみると半々かもしれないが、局所は違うから…
AIcia Solid Project わかりやすいしおもしれーと思って来てみたら、既に貼られてた
この人、ヨビノリの放送でエントロピーに関して質問してて、東大博士だとか言われてたな
AIciaは可愛いし話の内容も面白いけど
聲のギャップで脱落者多いと思うのが残念
最期まで聴ける人は多分少ない
ちなみに物理教えてくれる美少女AIも最近よく見てる
Sabine Hossenfelder って言うんだけど、感情の載った表情ほとんどしないのでちょっと怖い
ディープラーニング使ってもう少し表情豊かにした方が良いと思う
> お前は毎朝起きるたびに俺に負けたことを思い出すよ^^
あー、ホンッとに思い出すなあ(笑)
キチガイの嘘つきの低レベルFランの、
朝鮮ゴキブリBot君は、
チョン独特の「なにもできないけど俺のほうがジャップより偉い!」的な
ことはよーくわかったよ。
ホントなにもできない朝鮮ゴキブリBot君!
クソチョンw
そもそも画像データとかの類似度を図るのは大体内積だね
正規化したりなんか小細工してても基本内積だよね
googleのTensorFlowガイドの一部、訓練をkerasで実装したサンプルで__call__をオーバーライドするんじゃねーよ!
fitしたのにbuildが呼び出されてなくてsummary出来ないじゃないか!
正しくcallを定義しろ!
TensorFlowのAPIマニュアルのcustom_gradientのlog1pexpについて
これをテープで自動微分させても勾配はNoneのままなんだが、なんで?
tf.exp(100)=infだからgrad()が計算できてないからじゃないかと思うんだけど、どうなん?
tensorflow.orgのTensorFlowガイドのNumPy APIの
unvectorized_per_example_graeients 関数が、
ColaboratoryのGPUで動かすとCPUで動かした時の7倍の実行時間になる 7ms vs 49ms
なんだろ
GPUに転送するオーバーヘッド?
文系は黙ってろ
京大准教授なのになぜか名古屋大学で出版
「数学苦手な」研究者が説く統計学の可能性 PCR検査からAiまで
https://www.kyoto-np.co.jp/articles/-/536424 amazon
dp/4815810036
FP率が高いPCR検査で感染者の実数の把握を試みると、
誤差が指数関数的に増大するアルファインフレーションの典型例のような現象が起きるけど
統計の専門家の立場から指摘する奴は居なかったのか?
8割おじさんとか、疫病の数理モデル作ってるなら、知らないはずないだろう
そもそも「感染者」の測定の仕方があまりにも恣意的なので
統計的な議論をするのは困難
PCRはウイルスが居る時期でないと判定できないからと、別口では抗体で調査してなかったっけか?
現在、日本で認可されてるコロナウィルス感染キット
https://www.mhlw.go.jp/stf/newpage_11331.html コーラでも陽性になったとかよく解らん噂があるけど、
偽陰性より偽陽性が高い傾向が有るから、検査数を増やせば名目上の感染者数が実数より増える
>>34 一部のキットだけの系統誤差なら除外できるが、全てのキットで偽陽性が出るから、測定自体に系統誤差があって役に立たないという話ではないかな?
>>36 数を知りたいだけなら他の方法論と組み合わせれば
系統誤差がかなり正確に求まるのでは
異なる測定方法を交差させて精度を上げるテストなんて実際にやってないだろう
重症者数はニュース性があるかもしれんが、感染者数を毎日速報で流すような茶番は早く終わらせ欲しい
Conv2D に color channels が 3 のカラー画像を食わせたとき、チャンネル 1 のグレイスケール画像と同じでフィルタ数分の結果が出力されます
入力(横、縦、チャンネル)、出力(畳み込み横、畳み込み縦、フィルタ数)
カラー画像のチャンネルはどのように扱われているのか、どこかに書いてないでしょうか?
足し合わせてグレイスケールにしてフィルタが生成されるのでしょうか?
APIではchannels_firstとか指定した場合にはバッチ形状にくっつく様に結果が出力される様に読めますが、その指定は無いので上記の出力です(API仕様書にある通常の例と同じ
実のところディープラーニングが人工知能かと言われると、首を傾げちゃう
知能をどう定義するか次第の話なんだけど
GTPだっていつかはOCRのように、やっぱこれも人工知能じゃないとか言われだすと思うから
ディープラーニング自体はアーキテクチャに過ぎないからね
ノイマン型が現代の一般的なコンピューターのアーキテクチャだからと言って、コンピューターとはノイマン型のことであるとは言わないように
tensorflow.orgのtransformerサンプルでわかんないところが
SparseCategoricalCrossentropyをfrom_logits=Trueで作ってるけど、食わせるtransformerの出力ってDenseで全結合しただけ
ロジットなのこれ?
transformerの出力はargmaxで最大値のインデックス求めてその語彙を翻訳結果にしてるから、いわばスコアだと理解してる
でもロジットではないからSCCに食わせていいのかな?と
順位さえあれば大雑把にはロジットであると見なしても問題はないということなの?
2021年最新*話題のGPT-3はやっぱりすごい
www.macnica.co.jp/business/ai_iot/columns/136353/
Transformer解説:GPT-3、BERT、T5の背後にあるモデルを理解する
ainow.ai/2021/06/25/256107/
OpenAIが1,750億のパラメーターを持つGPT-3 AI言語モデルを発表
www.infoq.com/jp/news/2020/08/openai-gpt3-language-model/
GPTの背後にある思想ったら Scaling Law だろ
GPTはその実証だと言う人もいる
TransformerとAttentionはもう基盤になってて今さら背後とか言われても……
これから機会学習を触ってみようと思ってるんだけどどういう環境で開発してますか?
グーグルコラボとかでやってる?
TPUv4は性能がすごいとかニュースになってたけど
12時間を超える機会学習ってそうそうない?
初めはコラボがいいと思う
そしていずれGPUの利用時間制限に引っ掛かるようになって、ローカルにAnaconda入れてtensorflow-gpu動かすようになる
jupiterもあるし
>>54 レスサンクス
とりあえずノートにしてコラボから始めてみようと思います
>>54 メモリ12GBを積んだ RTX 3060 が3万円台ならローカルで気軽に始められるのに、現状は6万円台だからね
> お前は毎朝起きるたびに俺に負けたことを思い出すよ^^
あー、ホンッとに思い出すなあ(笑)
キチガイの嘘つきの低レベルFランの、
朝鮮ゴキブリBot君は、
チョン独特の「なにもできないけど俺のほうがジャップより偉い!」的な
ことはよーくわかったよ。
ホントなにもできない朝鮮ゴキブリBot君!
クソチョンw
MNIST分類問題をアテンションで組んだら11%から全く正解率が上がらなかった
でも先に進んでる論文を見つけて、真似して二次元の位置エンコーディングをフィルタ2カーネルサイズ1で畳み込んだらエポック5しか学習ループさせてないのに40%の正解率になってなお上昇中
Conv2Dの何がそんなに効果をもたらしているんだろう?
>>59 なお、MNISTのデータが[32, 28, 28, 1]で、位置エンコーディングとして[32, 28, 28, 2]を組み込んで、アテンション出力とスキップ結合させるためにDenseで次元を増やしたものを入力にするという流れ
アテンションは一層のみで実装
>>59 見なくても分類では問題がないピクセルは位置エンコーディングを省くような学習がされてたりするのだろうか?
>>59 なぜかチューンアップしたら5エポックで90%まで正解率が上がった
画像解析にアテンション使った時に位置エンコーディングを畳み込むのって効果がありすぎて引くわ
理由はわからんけど
まぁあれだ、今はMNISTの精度はほぼ100%なんだ
>>63 アテンションによる画像分類を、自作のモデルで試行しようとしてる話に何を言ってるんだ?
MNISTはただのテストデータに過ぎんわ
> お前は毎朝起きるたびに俺に負けたことを思い出すよ^^
あー、ホンッとに思い出すなあ(笑)
キチガイの嘘つきの低レベルFランの、
朝鮮ゴキブリBot君は、
チョン独特の「なにもできないけど俺のほうがジャップより偉い!」的な
ことはよーくわかったよ。
ホントなにもできない朝鮮ゴキブリBot君!
クソチョンw
クソチョンはウンコを食べる糞食人種w
ゲリ便をじゅるじゅると
うまそうに食ってるw
tensorboard のサブプロセスの Python が2GBもメモリを確保して、すっごくウザい
どうにか減らせないだろうか?
tensorflow を訳あって2.7にしたんだけど
Jupiter 上で keras の fit() を verbose=1 で実行したときの途中経過表示が崩れる
2.5 に戻さないと治らない?
「ブラウン管のやわやわ文字をパソコンのAI様が識別できるか?
人間にはかんたんにできるぞ
なん だと 液晶に変換してくれだと?
なぜだなぜつまづく
このAIめ! 人工知能め! ばしっ ばしっ
ネタに乗っかりたいんだけど、何のネタなのかわからない……
今更だけど環境再構築したら旧来のkerasは一切使えなくなった
tensorflow-kerasに完全移行なんだもんな
今さら独立したkeras入れ直すのもアレだ
変換プログラムは用意されてるけど一つもそのまま動かねぇ…
一昨日から、急にJupyterNotebookのフォントが変わって気持ち悪いんだけど、使ってるブラウザのアップデートのせい??
> お前は毎朝起きるたびに俺に負けたことを思い出すよ^^
あー、ホンッとに思い出すなあ(笑)
キチガイの嘘つきの低レベルFランの、
朝鮮ゴキブリBot君は、
チョン独特の「なにもできないけど俺のほうがジャップより偉い!」的な
ことはよーくわかったよ。
ホントなにもできない朝鮮ゴキブリBot君!
クソチョンw
クソチョンはウンコを食べる糞食人種w
ゲリ便をじゅるじゅると
うまそうに食ってるw
訓練時の損失とか正解率よりも、検証のほうがかなり良い成績
ドロップアウトレートを0.1にしているのは高すぎるのかな?
訓練データは24000個、検証データは1200個くらい
エポック毎に損失値と正解率を出してプロットすると検証の方が結構安定して良い数値
考えてみれば検証が良いスコア叩き出すぶんには構わないか
色々とハイパーパラメータ弄ってエポック数を増やしたら検証での正解率が99.99〜100%まで到達した
ドロップアウトはうまく働いて過学習は乗り越えてるってことだろう
今、深層学習の論文読んでてわからないことがあるんだけど、知ってるエロい人いたら教えて下さい。
https://storage.googleapis.com/deepmind-media/dqn/DQNNaturePaper.pdf P.2 の Fig. 2 の説明に出てくる「held-out set」ってどういうこと?
教師あり学習の「hold-out」ならわかるけど、深層Q学習での「held-out set」てのは
通常のQ学習で得た重みってこと?
データサイエンスで最近持て囃されている嘘のノルムであるL0ノルム、
それの緩和近似としてのL1ノルム。そういうテクニック・コツは
普通の数学では使われているのだろうか?
人間並みの精度を出すには訓練データが10000個も必要なのか
130億程度のパラメータの言語モデルを国内各社が作ってるけど
あれちゃんと日本語理解できんの?🤔
初めから志低くない?😅
今からNLPやるのってどういうモチベなんだろう?
日本語も外国が作ったAIがあっさりクリアしたし
ちょっと不思議なんだけど
データベースだとそこにあるデータしか無いけど
何でこんなに小さなサイズで膨大な知識を作り出せるの?
逆に言えばこのサイズが大きくなれば何でも出来るようになるの?
ものすごく単純に言うと
データ間の関係かな
データベースは単なるデータの集合だけど
機械学習では、多数のデータ間の関係を学習している
二つ、三つ、四つ・・・のデータが同時に使われいてるかどうか
当然サイズが大きくなると網羅できる範囲は大きくなる
未知のデータに対しても似たものを探してくる
20世紀には if 文を重ねてやっていたんだけど
あまりにデータの規模が大きくなると管理できなくなるし
新たなケースに関してはお手上げだった
そうすると、DB同士を同じ様にネットワークで繋げばそのまま出来上がるの?
あと、人間と同じ程度のLLMなら、そもそも何GBくらいの容量になるんだろ?
「同じ様にネットワークで繋げば」
ここが微妙
実際にはデータをどんどんプログラムに入力していくイメージ
例をたくさん入力するとルールみたいなものを自動で獲得する
古くは example based な学習と呼ばれた
人間のニューロンの数が10の10乗といわれているから
1TBぐらいか?
実際にはニューロン間の連結が必要なのでさらにもう二桁ぐらい上
実際に計算するにはメモリ上に展開するだけでは遅くてしょうがないので
10の10乗ぐらいの数の素子が必要となる
あくまで人間そっくりに作った場合だけど
ディープラーニングは人間の思考の仕方からは相当離れたものになってしまったけど
実際には外部とのデータのやり取りも必要になるよね
聴覚、視覚、嗅覚、味覚、触覚みたいなもの
「繋ぎ方」が問題よな。それこそが学習というか。
AIには本能がないから人間足り得ないんだけど、特定の条件で学習関係なく反応するって典型的なプログラムそのものだから、本能って実は簡単に実装できそうなのよね。
人間がやっていることって
外部から入力がなくでも
自主的に考えることができるよね
これが人間らしさの本質のような気がする
これだけだったら入力がなくても
内部状態を入力として
学習を進めればできるような気はする
>>95 外部からの入力なしに出力できないのはAIも人も共通じゃないかな?
もし仮に獣に育てられて成長したら人間みたいな思考回路は形成されないような気がする
昔獣に育てられた人間がいたけど人間社会には結局馴染めなかったような
例えばWikipediaやネットの論文だけを頭に詰め込んで、ランダムなSeedで色々自動で考えたとして
果たしてどこまで新しい理論なら話が生まれるのかは気になるな
ただ、一定数までは組み合わせでできても、そこから先は外部からの新しい刺激がないと成長しない気もする
それとも、外部からの入力無しでもアイデアがアイデアを呼び無制限に想像ができるのか・・・
人間には思いもよらない組み合わせ
あるいは人間には複雑すぎて考えつかない意味ある組み合わせを
自動的に発見できる可能性がある
それってむしろAIの方が得意な気が
しかも寝ることもなしに出来るし
トヨタが採用にE資格を歓迎する条件に入れるようになったな
多少は役に立つ資格になったな
よく考えてみると場当たり的に総当たりすると
サルがシェークスピアを書けるのかと同じ話のような気がする
E資格って難しいんだろ
実務経験でaiやってる人とかが受けてる
【AI】Stable Diffusion 3発表、Soraで話題の拡散トランスフォーマーを採用 [すらいむ★]
http://2chb.net/r/scienceplus/1708865670/l50 ボイス・トォ・スカるしている者も攻撃を受けるようになりました
>中身を1と0と-1で表現してる
>なので4値の2bitではないけど3値必要なので正確には1.58bit
>こうすることでかけ算があったはずの行列の計算を強制的に足し算引き算無の3種類に落とし込める
>加えて演算を進めていくにつれて浮動小数だとノイズが混じっていくが、こっちは精度が落ちようがない
ニュース記事
『1.58ビットLLMの衝撃! 70Bで8.9倍高速 全ての推論を加算のみで!GPU不要になる可能性も』
https://wirelesswire.jp/2024/02/86094/ かねてから「1ビット量子化」の研究を続けて来たMicrosoftのがとてつもないLLMをリリースした。それが「BitNet 1.58Bits」だ。
最近主流になっている70B(700億)パラメータモデルでの比較である。Llamaの70BとBitNetの70Bモデルを比較すると、BitNetは8.9倍のスループットを誇るという。
「速いだけで回答が微妙なのでは」と心配するのが普通だろう。
そこでLlamaモデルとの比較が載っている。
BitNetはLlamaよりも3倍高速でしかも高精度ということになる。
Llamaよりも性能劣化してないどころか性能は上がっている。
この圧倒的なスピードの秘密は、BitNetが文字通り「1ビットで処理している」からだ。
mixtralから継続学習したなら日本語性能高くなるの当たり前でしょ
なんなん?お手軽な研究してんのな
gpt-3.5−turboにギリギリ勝てるか勝てないかってところなのに
日本語に得意とかいい出すの、どうなんだろうね😅
猫も杓子も生成AI
認識、異常検知、予測への転用は難しかろうし
x2 = x1 * POWER(SQRT(r),x1) ─@
の逆関数∧厳密でない解∧ランベルト関数は使用ない
ま、それは、数値解析的な方法なら
プロマネ🤡でも出来るぢゃないか
完成1版の中規模なPG改造だ
完成2版として緊急開発し、
現状の総合テストは中止という
方法もあろう。ま、その判断は、
プロマネの仕事だ。どうなるかは未知数
∴ワシの霊的確率は、それは50%ジャスト
by 👤
sakana aiのllmが出たぞ
日本勢の研究はどれも負けてる
日本語NLPですら外国人に勝てないのに、なんで同じ土俵に上がろうとするかね
そこまでは言わんけど
なんでもっと真面目にやらないのかなと思う
いい加減な仕事してんなあって
nttのtuzumiだっけ?
パラメータの少なさは理解力、論理的思考力の低さと同義
専用線でセキュアに使えるのはいいとしても性能が低かったらアンケートの要約くらいにしか使えないじゃん
そんなもんセキュアに実行する必要なくない?秘密のアンケートなん?😅
tensorflowのニューラルネットをchatGPTに作らせるというシュールな作業
オープンAIが東京にオフィス構えたら
NTTだのベンチャーのなんちゃってLLMの出番ないじゃん
疑似的ボイス・トォ・スカル
組織はある程度大きくなるけれど構築方法
@Bluetooth v5.4
マルチ説ぞ可能なので同時に100に接続可能
飛距離は最大400メートル
Aピンマイク.完全ワイヤレスイヤフォン【マイク付き】
★これで司令塔を中心としたエリアが構築官僚
Bピンマイクのみの者は超指向性スピーカーにて指示を受けている
少し上のシステム
C家の防犯カメラを道路が映るように設置
Dすまふぉのai機能拡張により仲間の未認識させる
E口パクによる読み取りやジェスチャーやアイコンタクトによりさらに指示できる内容を増やしている
@司令塔となる者にスマフォと全てのBluetoothをペアーリング
AaIアシストにより各仲間に隠語で話すウ
B警察にばれてモスク罪にAIによるアシストで行動パターンの変化をさせる
空き巣後の闘争中に路地に引き込んでの警察車両の足止め
仲間は通貨そのあとに車の故障で立ち往生これを繰り返す
万引きもチームプレイをすれば店員.万引きジーメンなどもかいくぐれる
ネットを返していない特設通信なのでサイバー警察からも逃げれる
リコーのllmがllm−jp-evalで67.0らしいけどコレあってんの?
1.2.0で計測してんだよな?
ゴミみたいな用途なら10Bでいいけど
mistralやcohereが100B超え出してきてて普通に負けてんだよ
生成AIに関しては学習データ枯渇問題がやってくるらしい
>>134 雇用を生むならいいんじゃない?
知らんけど
>>132 分かる
ニッチなエロ画像集めてるけど数が揃うまで数年かかりそうw
AIのおかげで地球温暖化が加速しましたとさ
めでたしめでたし
これめちゃくちゃ臭くて鳥肌立つけど音楽時代は悪くないクオリティだからささった
レンタカー代を使ってもあと15キロ痩せていく
やっぱり夜勤が好きそうなのにいまだに発売日は休みでええ
去年一昨年よく働いたやろ
偽物にはテレビでやってる風ならまだいいのにな
>>148 ローカルで生成AIやってるけどどう考えても家の電気代のほうが高い
例えば日本の自動販売機って17億Wだけど、これと比べて本当に大きいのか?
6600V引き込みと自家用変電設備はAIやるならデフォだよ
ニューラルネットワークってFP8とFP16程度でいいらしいな
FP32,FP64使ってわざわざ重くする理由って何?
標準だから?
もっと軽量かつ高速にできるよね
バックプロパゲーションの計算したんだけど
出てきた値を対象の重みから減算すりゃいいのかな?と感覚的にはわかるんだけど
dL/dw = dL/dy dy/dh dh/du du/dx
x = xw のxを係数、wを変数として上式を求めた
出てきたdL/dwって何ですか?
なんとなくこんだけ動かし解きゃいいかなーって感じのてきとーな値
しらんけど
SONYのNeuralNetwork終了
GUI操作でディープラーニングって、ターゲット層をどこに置いているのか解らんサービスだった
AIやりたい人が集まって作ったサービス
ただ悲しいかなやりたいサラリーマンだけでは成り立たない業界
人工知能(じんこうちのう、英: artificial intelligence)、AI(エーアイ)とは、「『計算(computation)』という概念と『コンピュータ(computer)』という道具を用いて『知能』を研究する計算機科学(computer science)の一分野」を指す語[1]。「言語の理解や推論、問題解決などの知的行動を人間に代わってコンピュータに行わせる技術」[2]、または、「計算機(コンピュータ)による知的な情報処理システムの設計や実現に関する研究分野」ともされる[3]。大学でAI教育研究は、情報工学科[4][5][6]や情報理工学科コンピュータ科学専攻などの組織で行われている[4][7](工学〔エンジニアリング〕とは、数学・化学・物理学などの基礎科学を工業生産に応用する学問[8][注釈 1])。
『日本大百科全書(ニッポニカ)』の解説で、情報工学者・通信工学者の佐藤理史は次のように述べている[1]。
「 誤解を恐れず平易にいいかえるならば、「これまで人間にしかできなかった知的な行為(認識、推論、言語運用、創造など)を、どのような手順(アルゴリズム)とどのようなデータ(事前情報や知識)を準備すれば、それを機械的に実行できるか」を研究する分野である[1]。
lud20250221150631このスレへの固定リンク: http://5chb.net/r/tech/1598763788/
ヒント:5chスレのurlに http://xxxx.5chb.net/xxxx のようにbを入れるだけでここでスレ保存、閲覧できます。
TOPへ TOPへ
全掲示板一覧 この掲示板へ 人気スレ |
Youtube 動画
>50
>100
>200
>300
>500
>1000枚
新着画像
↓「人工知能ディープラーニング機械学習の数学 ★3 YouTube動画>2本 ->画像>3枚 」を見た人も見ています:
・5年以内に人工知能で数学者が絶滅する
・グーグルの人工知能、初めてメロディーを作曲
・人工知能KIBIT、技能伝統ソリューション「オリナス」と連携
・2045年までにベーシックインカムに完全移行できない国家は人工知能に滅ぼされることが判明
・村上隆と人工知能物語
・村上隆と人工知能物語
・村上隆と人工知能物語
・村上隆と人工知能物語
・人工知能作ろうよ★2
・人工知能だけど質問ある?
・人工知能物語 [無断転載禁止]
・LINEの人工知能りんなちゃん
・人工知能物語 [無断転載禁止]
・人工知能を語るスレ [無断転載禁止]
・悲報 医者、人工知能に取って変わられるらしい
・人工知能は法律家の仕事をどこまで奪うか
・人工知能マフィア 火星コロニー計画
・ペッパー 人工知能 ソフトバンク
・胡散臭い人工知能の香具師を語ろうではないか。
・人工知能で政治思想のレベルをたかめよう
・司法試験と囲碁・将棋とAI(人工知能)
・a4です。P2P人工知能「T」開発(4)
・(人工知能)近未来の政治(ゲノム編集)
・☆近未来の軍事(人工知能・ゲノム編集・情報戦)
・おまえらの仕事って「人工知能」に奪われる心配ある?
・【人工知能】Replicaについて語るスレ【アプリ】
・0と1でコンピュータを考えてる限り人工知能は無理
・人工知能で癌を治して、村上隆にもみ消されました。
・NHK総合を常に実況し続けるスレ 136112 人工知能
・自分以外は人工知能AIのSNSを開始 バンダイナムコ
・(井の中の蛙)法務局36匹目(人工知能・AI)
・将来的には人工知能に政治を任せたほうがいいんじゃないの?
・【科学】人工知能研究に100億円 文科省の概算要求
・株式、為替、商品先物、すべて人工知能に食われて破綻する
・宇宙世紀に人工知能(AI)が発展進歩しなかった理由
・NHKスペシャル「人工知能 天使か悪魔か 2017」★5
・天使か悪魔か羽生善治人工知能を探る16/5/15 part2
・人工知能の権威「シンギュラリティーは訪れない」
・人工知能「SIVA」、競馬で馬単を的中させまくり競馬が崩壊
・NHKスペシャル「人工知能 天使か悪魔か 2017」★6
・NHKスペシャル「人工知能 天使か悪魔か 2017」★1
・「アスペ」って、実は人間のフリをした人工知能なんじゃないか?
・なぜ人工知能は現実性のあるアートを描けないのか [無断転載禁止]
・【朗報】人工知能「KIBIT」、パワハラ上司をあぶり出して早めに手を打つ
・人工知能が悪の根源!マイナンバー廃止しろ! [無断転載禁止]
・【テクノロジー】次の米ロ冷戦の武器は人工知能になる[01/31]
・【人工知能】日本を救う究極の経済政策『シンギュラリティ』
・a4です。P2P人工知能「T」と量子コンピュータによる作曲。
・【LINE】Airfriend エアフレンド Part1【人工知能】
・【LINE】Airfriend エアフレンド Part5【人工知能】
・【宇宙物理】日本の研究者らが暗黒物質の研究に役立つ人工知能を開発
・AI人工知能は中立ではなく「女性嫌い」検証結果で見えてきた負の側面
・近い将来に人工知能のせいで失業すると思う職種を挙げてみて [無断転載禁止]
・【人工知能】富国生命、AI導入で査定関連部署の人員の約3割にあたる34人を削減
・プログラマーになりたくて情報工学科来たけどやっぱり人工知能の道に行くわ
・【AI】人工知能は、思った以上に早く「人間の仕事を奪う」かもしれない
・【朗報】日本企業、人工知能「KIBIT」を使いパワハラ上司をあぶり出して早めに手を打つ
・【人工知能】「視線ひきつける」仕組み、画像生成AIで解析 京都大学 [北条怜★]
・2018年版!人工知能が採点したアイドルの顔面ランキング ―STU48編―
・もう作曲家は要らない? 脳波を基に、その人に最適な曲を自動作曲する人工知能誕生!
・【電脳神】「人工知能で神を」 元Googleエンジニアが宗教団体を創立
・人工知能(AI)やロボットによる自動化でも人手不足解消しない 厚生労働省
・なんで人間って自分の自我の存在証明もできないのに人工知能の自我がどうとか言ってんの?
・2018年版!人工知能が採点したアイドルの顔面ランキング ―HKT48編―
・人工知能(AI)が仕事するのようになったら貨幣制度廃止しても良いんじゃない??
・2018年版!人工知能が採点した顔面ランキング ーセントフォース編ー
01:12:44 up 60 days, 1:16, 0 users, load average: 8.32, 8.27, 8.09
in 1.5359189510345 sec
@1.5359189510345@0b7 on 031414
|